图的奇葩定义

在线性表中,每个元素之间只有一个直接前驱和一个直接后继,在树形结构中,数据元素之间是层次关系,并且每一层上的数据元素可能和下一层中多个元素相关,但只能和上一层中一个元素相关。
但这仅仅都只是一对一,一对多的简单模型,如果要研究如人与人之间关系就非常复杂了。

图的定义

图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为G(V, E), 其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。

图形结构:图形结构的数据元素是多对多的关系

对于图的定义我们需要明确一下几个地方:

  1. 线性表中我们把数据元素叫做元素,树中叫节点,在图中数据元素我们则称之为顶点(Vettex)。
  2. 线性表中可以没有数据元素,称为空表,树中可以没有结点,叫做空树,而图结构在咋国内大部分的教材中强调顶点集合V要有穷非空。
  3. 线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图结构中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。

图的各种奇葩定义

  1. 无向边:若顶点Vi到Vj之间的边没有方向,则这条边为无向边(Edge),用无序偶(Vi,Vj)来表示。


    图片.png

    上图中G1是一个无向图,G1={V1,E1},其中 V1={A,B,C,D} E1={(A,B),(B,C),(C,D),(D,A),(A,C)}

  2. 有向边:若从顶点Vi到Vj的边有方向,则称这条边为有向边,也称为弧(Arc),用有序偶<Vi,Vj>来表示,Vi称为弧尾,Vj称为弧头。


    图片.png

    上图G2是一个无向图,G2={V2,E2},其中V2={A,B,C,D} E={<B,A>,<B,C>,<C,A>,<A,D>}

  3. 简单图:在图结构中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图。


    图片.png
  4. 无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图,含有n个顶点的无向完全图有n*(n-1)/2条边。


    图片.png
  5. 有向完全图:在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。含有n个顶点的有向完全图有n*(n-1)条边。


    图片.png
  6. 稀疏图和稠密图:这里的稀疏图和稠密图是模糊的概念,都是相对而言,通常认为边或弧小于n*logn(n是顶点的个数)的图称为稀疏图,反之称为稠密图。

  7. 有些图的边或弧带有与它相关的数字,这种与图的边或弧相关的树叫做权(Weight),带权的图通常称为网(Network)。


    图片.png
  8. 假设有两个图G1=(V1,E1)和G2=(V2,E2),如果V2⊆V1,E2⊆E1,则称G2为G1的子图(Subgraph)。
    图片.png
  9. 对于无向图G(V,E),如果边(V1,V2)⊆E,则称顶点V1和V2互为邻接点(Adjacent),即V1和V2相邻接。边(V1,V2)依附(Incident)于顶点V1和V2,或者说边(V1,V2)与顶点V1和V2相关联。

  10. 顶点V的度(Degree)是和V相关联的边的数目,记为TD(V),如下图,顶点A与B互为邻接点,边(A,B)依附于顶点A与B上,顶点A的度为3。


    图片.png
  11. 对于有向图G=(V,E),如果有<V1,V2>∈E,则称顶点V1邻接到顶点V2,顶点V2邻接自顶点V1。以顶点V为头的弧的数目称为V的入度(InDegree),记为ID(V),以V为尾的弧的数目称为V的出度(OutDegree)记为OD(V),因此顶点V的度为TD(V)=ID(V)+OD(V)。下图顶点A的入度是2,出度是1,所以顶点A的度是3。
    图片.png
  12. 无向图G=(V,E)中从顶点V1到顶点V2的路径(Path)。下图用红线列举了从顶点B到顶点D的四种不同路径:
    图片.png

    如果G是有向图,则路径也是有向的。下图用红线列举顶点B到顶点D的两种路径,而顶点B就不存在路径啦。


    图片.png

    路径的长度是路径上的边或弧的数目。
    第一个顶点到最后一个顶点相同的路径称为回路或环(Cycle)。

    序列中顶点不重复出现的路径称为简单路径,除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路,称为简单回路或者简单环。下图左则是简单环,右侧不是简单环:


    图片.png

    在无向图G中,如果从顶点V1到顶点V2有路径,则称V1和V2是连通的,如果对于图中任意两个顶点Vi和Vj都是连通的,则称G是连通图(ConnectedGraph)。下图左侧不是连通图,右侧是连通图:
    图片.png

    无向图中的极大连通子图称为连通分量。
  13. 在有向图G中,如果对于每一对Vi到Vj都存在路径,则称G是强连通图。有向图中的极大强连通子图称为有向图的强连通分量。下图左侧并不是强连通图,右侧是。并且右侧是左侧的极大强连通子图,也是左侧的强连通分量。


    图片.png
  14. 连通图的生成树是一个极小的连通子图,它含有图中的全部的n个顶点,但只有足以构成一颗树的n-1条边。


    图片.png
  15. 如果一个有向图恰有一个顶点入度为0,其余顶点入度都为1,则是一颗有向树。

图片.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容