图解mapreduce&yarn的工作机制

mapreduce&yarn的工作机制----吸星大法.png

YARN:资源(linux资源隔离机制:运算资源---运算程序jar/配置文件/CPU/内存/IO--从linux中开辟出诸如内存、处理器的container虚拟容器类似docker、openstack)调度系统,负责管理资源调度和任务分配
1、mr程序提交的客户端所在的节点运行/XX/XX/XX.jar,其中的main方法submit任务后会调用YARNRUNNER类,实现了clientprotocol(总RPC协议)。因此该类可以申请提交一个application并获得application的资源路径
2、resources manager返回资源提交的路径和application_id。
3、客户端提交job运行所需要的资源文件
4、客户端通过RPC告知resources manager资源提交完毕,申请运行mr appmaster。由于一个公司有很多个作业在运行和提交,因此resources manager有一个队列,使用了FIFO调度策略
5、将用户的请求初始化成一个task,并将task放进队列,等待nodemanager来获取任务task
6、nodemanager通过心跳机制领取到task任务
7、领取到任务的nodemanager将产生一个容器container,包括cpu和ram。并且从集群中下载YARNRUNNER提交的资源到本地,并且启动 appmaster,appmaster就能读取到配置文件的相关信息,这里resources manager和nodemanager都不知道这些相关信息,只有自己的程序appmaster知道,比如切片信息、mapTask和reduceTask的数量。
8、申请运行mapTask的容器container(这个过程类似客户端申请容器container,名字默认为yarnchild)。
9、其他nodemanager从resources manager领取到任务,并且创建容器container.
10、发送程序启动脚本 java -cp...,启动程序通过cpu+ram+jar来执行mapTask代码并且输出分区且有序的文件。容错:如果有一个mapTask执行失败,请重新申请一个容器container。任务备份:一个mapTask执行慢,将重新申请container执行备份任务,取较快者。
11、appmaster想RM申请指定数量的容器,运行reduceTask程序。
12、reduce节点向所有map节点获取相应分区的数据并执行,执行完成后reduce节点会回收container容器
13、application运行完毕后,mr appmaster会向RM注销自己

本地模式和集群模式区别详情见https://blog.csdn.net/ForgetThatNight/article/details/78570234#t17 3-2-2

可以在Windows上本地跑mapreduce程序,但是需要配置环境变量

package cn.itcast.bigdata.mr.wcdemo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * 相当于一个yarn集群的客户端
 * 需要在此封装我们的mr程序的相关运行参数,指定jar包
 * 最后提交给yarn
 * @author
 *
 */
public class WordcountDriver {
    
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        
        //是否运行为本地模式,就是看这个参数值是否为local,默认就是local
        /*conf.set("mapreduce.framework.name", "local");*/
        
        本地模式运行mr程序时,输入输出的数据可以在本地,也可以在hdfs上
        到底在哪里,就看以下两行配置你用哪行,默认就是file:///
        /*conf.set("fs.defaultFS", "hdfs://mini1:9000/");*/
        /*conf.set("fs.defaultFS", "file:///");*/
        
        
        
        //运行集群模式,就是把程序提交到yarn中去运行
        //要想运行为集群模式,以下3个参数要指定为集群上的值
        /*conf.set("mapreduce.framework.name", "yarn");
        conf.set("yarn.resourcemanager.hostname", "mini1");
        conf.set("fs.defaultFS", "hdfs://mini1:9000/");*/
        Job job = Job.getInstance(conf);
        
        job.setJar("c:/wc.jar");
        //指定本程序的jar包所在的本地路径
        /*job.setJarByClass(WordcountDriver.class);*/
        
        //指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);
        
        //指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        
        //指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        //指定需要使用combiner,以及用哪个类作为combiner的逻辑
        /*job.setCombinerClass(WordcountCombiner.class);*/
        job.setCombinerClass(WordcountReducer.class);
        
        //如果不设置InputFormat,它默认用的是TextInputformat.class
        job.setInputFormatClass(CombineTextInputFormat.class);
        CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);
        CombineTextInputFormat.setMinInputSplitSize(job, 2097152);
        
        //指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //指定job的输出结果所在目录
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        //将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
        /*job.submit();*/
        boolean res = job.waitForCompletion(true);
        System.exit(res?0:1);
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,063评论 6 510
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,805评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,403评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,110评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,130评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,877评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,533评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,429评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,947评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,078评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,204评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,894评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,546评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,086评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,195评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,519评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,198评论 2 357

推荐阅读更多精彩内容