理解五个基本概念,让你更像机器学习专家

摘要:这篇文章主要讲述了机器学习的相关内容,阐述了机器学习的主要意义和形成过程。区别了机器学习与AI、深度学习、神经网络等专业词汇。

大多数人可能对机器学习有点恐惧或困惑。 脑子中会有它到底是什么,它有什么发展方向,我现在可以通过它挣钱吗等等这样的问题。

这些问题的提出都是有依据的。事实上,你可能没有意识到自己其实多年来一直在训练机器学习模型。你看过苹果手机或者是Facebook上的照片吧? 你知道它如何向你展示一组面孔并要求你识别它们吗?其实,通过标记这些照片,你正在训练面部识别模型去识别新面孔。恭喜你,现在可以说你有训练机器学习模型的经验了!但在此之前,请阅读这些机器学习基础知识,以便你可以准确回答任何后续问题。

1)机器学习可以预测

如果你只是在图片中标记朋友的面孔,那就不是在用机器学习模型。如果你上传了一张新照片系统马上告诉你每个人是谁,那你就是应用了机器学习模型。机器学习的主要意义在于根据图案模型和经过训练的其他因素来预测事物。它可以预测任何事物,如要基于地理位置和卧室数量预测房价,基于一年中的时间和天气的变化预测航班是否会延误,依据图片中的人物特点进行人像识别等等。

2)机器学习需要训练

你必须告诉机器学习模型它试图预测的是什么。想想一个孩子是如何学习的,他们第一次看到香蕉,他们不知道它是什么。然后你告诉他们这是一个香蕉。下次他们看到另一个,他们会把它识别为香蕉,机器学习就是以类似的方式工作。你可以尽可能多地展示香蕉的照片,告诉它这是香蕉,然后用未经训练的香蕉图片进行测试。但这是一个过度的简化的方法,因为整个过程遗漏了告诉它什么不是香蕉的部分,除此之外还要给它展示不同种类不同颜色、不同角度的香蕉图片等等。

3)达到80%的准确度就可以认为是成功的

我们还没有达到通过机器学习平台识别图片中的香蕉达到100%的准确率技术的地步,但也没关系,事实证明,人类去识别也不是100%准确。业界的潜规则是达到80%准确度的模型就是成功的。大家可以思考一下,在你收藏的图片中正确识别800,000张是非常有用的,虽然可能还有错误的200,000张,但这已经节省了80%的时间。毋庸置疑,这是非常有价值的。假如我可以用它使你的生产力提高如此之多,你肯定会付我很多钱。而事实证明我可以用机器学习提高你的生产力。(2018年更新:80%规则改为90%规则。)

4)机器学习不同于AI,深度学习或神经网络

人们经常随意抛出以上这些术语,听起来像专家,但其中有很大差异。

AI-人工智能是指在完成特定任务时与人类一样好(或优于人类)的计算机。它也可以指一个可以根据大量输入做出决策的机器人,与终结者或C3PO不同。它是一个非常广泛的术语,不是很有特指性。

ML-机器学习是实现AI的一种方法。就是通过解析数据集对某事做出预测。ML平台可以通过许多不同的方式运行训练集来预测事物。

NL-神经网络是实现机器学习模型预测事物的方式之一。神经网络的工作有点像人的大脑,通过大量的训练来调整自己,以了解香蕉应该是什么样子。这个过程创建了非常深的节点层。

5)在AI变得有自我意识之前,我们还有很长的路要走

https://xkcd.com/1319/%29

我并不担心机器学习接管地球。主要是因为如果你曾构建过一个机器学习模型,就会明白它需要依赖你来告诉它究竟该做什么。即使你给出明确的指示,它通常也会出错。你必须对这些体系非常清晰明确,让它突然变化的可能性降到最低。即使是一个显示带有单词的框的简单网页,也需要你准确地告诉它该框出现的位置,形状,颜色,如何在不同的浏览器上工作,如何在不同的设备上正确显示等等。

本文作者:【方向】

作者:阿里云云栖社区

链接:https://www.jianshu.com/p/2476005da4bc

來源:简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容