SVM系列第八讲--原始问题求解

在前面的两讲中,我们分别介绍了拉格朗日乘子法和在有不等式约束情况下最优解必须满足的KKT条件,接下来我们就可以利用这些来求解我们的最大间隔分类器了。

1、问题回顾

在第四讲中,我们得到最大间隔分类器所满足规划问题:


规划问题

这里我们首先将问题求解为一个求最小值的问题,不难发现,原问题和下面的问题是等价的:


等价问题

2、原始问题到对偶问题

根据拉格朗日乘子法,我们将有约束问题转换为无约束问题:


拉格朗日乘子法

然后我们令:



之前已经提到过了,θ(w)和f(w)是等价的,容易验证,当某个约束条件不满足时,例如 yi(wTxi + b) < 1,那么我们显然有 θ(w) = +∞(只要令 αi = +∞即可)。而当所有约束条件都满足时,则有 θ(w) = 1 ∥w∥^2,亦即我们最初要最小化的量。因此,在要求约 束条件得到满足的情况下最小化 1 ∥w∥^2,实际上等价于直接最小化 θ(w)。

所以我们有:



进一步,我们可以将问题转换为对偶问题:


对偶问题

在上一讲中我们已经了解到了,在问题是凸优化问题并且满足 Slater条件情况下,二者的最优解是相等的(SVM满足这一条件)并且KKT条件成立,所以,我们首先要让 L 关于 w 和 b 最小化,我们分别令 ∂L/∂w L和 ∂/∂b 等于零:

带回L得到:



接下来,我们再求解外层的约束问题:

有关这个式子的求解,我们使用的方法是SMO方法,这个我们将在下一讲中讨论。
在求解出我们的w和b之后,我们已经可以得到超平面的方程:
分类超平面

这里的形式的有趣之处在于,对于新点 x 的预测,只需要计算它与训练数据点的内积即可(这里 ⟨⋅,⋅⟩ 表示向量内积),这一点至关重要,是之后使用 Kernel 进行非线性推广的基本前提。此外,所谓 Supporting Vector 也在这里显示出来——事实上,所有非 Supporting Vector 所对应的系数 α 都是等于零的,因此对于新点的内积计算实际上只要针对少量的“支持向量”而不是所有的训练数据即可。

为什么非支持向量对应的 α 等于零呢?直观上来理解的话,就是这些“后方”的点——正如我们之前分析过的一样,对超平面是没有影响的,由于分类完全有超平面决定,所以这些无关的点并不会参与分类问题的计算,因而也就不会产生任何影响了。这个结论也可由刚才的推导中得出,回忆一下我们刚才通过 Lagrange multiplier 得到的目标函数:



注意到如果 xi 是支持向量的话,上式中红颜色的部分是等于 0 的(因为支持向量的函数间隔等于 1 ),而对于非支持向量来说,函数间隔会大于 1 ,因此红颜色部分是大于零的,而 αi 又是非负的,为了满足最大化,αi 必须等于 0 。这也就是这些非 Supporting Vector 的点的悲惨命运了。
至此,在不考虑对α求解的情况下,我们已经得到了线性可分情况下SVM超平面的方程,不过只是线性可分情况下的分类超平面,我们还是任重而道远。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容