MapReduce

MapReduce模型

MapReduce采用“分而治之”策略,一个大规模数据集进行分片,多个Map任务并行处理。实现“计算向数据靠拢”理念,而不比大量移动数据造成网络开销。
MapReduce采用Master/Slave架构,一个Master,若干Slave。Master运行JobTracker负责作业调度,Slave运行TaskTracker负责具体作业处理。

JobTracker

1、负责任务调度与资源监控。

2、监控Job和TaskTracker的健康状态,一旦失败,相应任务就要发生转移。

3、跟踪任务进度,汇报给调度器,调度器根据在资源空闲时,分配合适的任务。

TaskTracker

1、定期使用“心跳”向JobTracker报告任务进度,同时接受新任务。

2、使用“slot”等量划分资源,调度的基本单位,一个Task只有拥有一个“slot”才能执行,调度器就是把空闲的“slot”分配给Task,分为Map slot和Reduce slot。

Task

分为Map Task和Reduce Task,都由TaskTracker启动。

image

MapReduce执行过程

image

InputFormat对HDFS中的数据进行加载,进行split(逻辑分片,HDFS中的Block是物理分片),RR(RecordReader)将各个分片的数据从HDFS中读取出来以键值对输出作为Map函数(用户程序自己编写的逻辑)进行输入,输出中间结果进行Shufflc,传给Reduce函数输出最终结果。

Split

逻辑上进行分片,分片的依据用户可以自定义,但分片的数量决定了Map任务的数量,理想分片是HDFS的块。Reduce任务的数量通常是比集群中Reduce slot槽的总量略小一点。

Shufflc

分为Map端Shufflc和Reduce端Shufflc

image

Map端Shufflc

image

每个任务配一个缓存,溢写比例0.8

1、分区默认采用哈希函数

2、排序是默认操作

3、合并不能改变最终结果,不一定发生

4、Map任务全部结束前对溢写的文件(大于预定值可以再次合并)进行归并,得到一个大的本地文件

5、JobTracker会检测Map任务进度,通知Reduce任务来处理数据

Reduce端Shufflc

image

来自不同Map机器的数据先写入缓存,归并数据,对溢写文件进行归并,输入给Reduce任务。数据小的话不发生溢写直接给Reduce。

MapReduce编程(重写map和reduce任务,实现词频统计。)

package org.apache.hadoop.examples;
 
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class WordCount {
    public WordCount() {
    }
   
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
        if(otherArgs.length < 2) {
            System.err.println("Usage: wordcount <in> [<in>...] <out>");
            System.exit(2);
        }
 
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(WordCount.TokenizerMapper.class);
        job.setCombinerClass(WordCount.IntSumReducer.class);
        job.setReducerClass(WordCount.IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
 
        for(int i = 0; i < otherArgs.length - 1; ++i) {
            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
        }
 
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
        System.exit(job.waitForCompletion(true)?0:1);
    }
   
  /**
    *Reduce类
    **/
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
 
        public IntSumReducer() {
        }
 
        public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            int sum = 0;
 
            IntWritable val;
            for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
                val = (IntWritable)i$.next();
            }
 
            this.result.set(sum);
            context.write(key, this.result);
        }
    }
 
  /**
    *Map类
    **/
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
        private static final IntWritable one = new IntWritable(1);
        private Text word = new Text();
 
        public TokenizerMapper() {
        }
   
        public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
 
            while(itr.hasMoreTokens()) {
                this.word.set(itr.nextToken());
                context.write(this.word, one);
            }
 
        }
    }

}

版权声明:本文为CSDN博主「隔壁阿源」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_41768073/java/article/details/82830833

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349