单细胞转录组高级分析六:TCGA生存分析

本文是参考学习单细胞转录组高级分析六:TCGA生存分析的学习笔记。可能根据学习情况有所改动。

前言
通过scRNA分析得到新的marker基因,gene signatures,以及解释研究结论的基因集和代谢通路,一般都会用公共数据库的bulkRNA数据验证一下。我们这个专题所用数据的来源文章就利用TCGA数据对TFH signatures做了生存分析。

We next utilized clinical data and bulk mRNA-seq data from The Cancer Genome Atlas (TCGA) (Liu et al., 2018) to determine whether CD4+ TFH signatures in HNSCC were related to survival (STAR Methods).

本篇文章将模拟原文的过程做一个生存分析,但是我在原文中找不到TFH signatures对应的200个基因,所以只能用其中的几个基因模拟一下。本次分析的结果与原文会有一定差异,大家关注生存分析如何操作即可。

UCSC Xena下载数据

UCSC Xena简介

UCSC是加利福尼亚大学圣克鲁兹分校(University of California, Santa Cruz)的简称,UCSC Xena是他们开发的一个癌症基因组学数据分析平台。该平台整合了多个癌症公共数据库的资源,比如来自TCGA, ICGC等大型癌症研究项目的数据,不仅可以下载各个数据集,还提供在线分析功能。

图片

HNSC数据集下载示例打开https://xenabrowser.net/datapages/,进入数据集选择页面:

图片

很容易就能找到我们需要的Head and Neck Cancer

图片

大家应该会发现这个页面会有GDC TCGA和TCGA两个开头的数据,TCGA是原版的数据,GDC TCGA是GDC(美国癌症研究所开发维护的一个癌症数据库资源门户网站,Genomic Data Commons)整理的TCGA数据,两个数据大同小异。点击箭头所指链接,进入以下页面:

图片

下载箭头所指的表达数据和生存数据

图片

表达数据下载页面,

箭头所指表达矩阵和Gene Mapping文件都要下载,

image.png

生存下载页面

最后得到三个文件:


图片

生存分析
读取TCGA数据

##安装生存分析R包

GSVA分析
原文富集分析用的200个基因找不到具体名称,我用了作者特异强调的8个上调基因代替,如下所示:

we first defined our TFH gene set based on the top 200 differentially upregulated genes between CD4+ Tconv cluster 1 and CD4+ Tconv cluster 7, which represent the two terminal-most differentiated states of CD4+ T cells. As a test statistic for enrichment in the bulk expression profile from each patient, we used the Kolmogorov-Smirnov (KS) test to compare genes in the gene set versus those not in the gene set.

图片
TFHset = list(c('PDCD1', 'CXCL13', 'TIGIT', 'TOX', 'MAF', 'CXCR5', 'CD40LG', 'IL6ST'))

生存曲线

ES <- data.frame(t(ES), check.names=F)
图片

生存曲线大体趋势与原文相符,差异没有他们的图那么明显。原文用于富集分析的基因数量远多于我演示用的基因数目,并且他们还对TCGA的数据做了过滤,这可能是他们效果更好的主要原因。Cox回归分析上述Kaplan-Meier方法只能针对分类变量做单因素生存分析,因此我将GSVA分析的结果转换成了只有high和low的二分类变量。如果不想转换可以用Cox比例风险回归模型分析:

res.cox <- coxph(Surv(OS.time, OS)~TFHset, data=TCGAclin)

Cox结果解读:

  • z值:Wald统计值,它对应于每个回归系数与其标准误差的比率(z = coef / se(coef))。

  • coef:回归系数,正数表示危险(死亡风险)较高,负数代表危险较低。

  • exp(coef):在此代表危险比(HR,hazard ratio)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容