Redis在Java web中的应用

一般而言 Redis 在 Java Web 应用中存在两个主要的场景,一个是缓存常用的数据,另一个是在需要高速读/写的场合使用它快速读/写,比如一些需要进行商品抢购和抢红包的场合。

由于在高并发的情况下,需要对数据进行高速读/写的场景,一个最为核心的问题是数据一致性和访问控制

缓存

在对数据库的读/写操作中,现实的情况是读操作的次数远超写操作,一般是 1:9 到 3:7 的比例,所以需要读的可能性是比写的可能性多得多。

当发送 SQL 去数据库进行读取时,数据库就会去磁盘把对应的数据索引回来,而索引磁盘是一个相对缓慢的过程。如果把数据直接放在运行在内存中的 Redis 服务器上,那么不需要去读/写磁盘了,而是直接读取内存,显然速度会快得多,并且会极大减轻数据库的压力。

而使用内存进行存储数据开销也是比较大的,因为磁盘可以是 TGB 级别,而且十分廉价,内存一般是几百个 GB 就相当了不起了,所以内存虽然高效但空间有限,价格也比磁盘高许多,因此使用内存代价较高,并不是想存什么就存什么,因此我们应该考虑有条件的存储数据。

一般而言,存储一些常用的数据,比如用户登录的信息;一些主要的业务信息,比如银行会存储一些客户基础信息、银行卡信息、最近交易信息等。一般而言在使用 Redis 存储的时候,需要从 3 个方面进行考虑。

  1. 业务数据常用吗?命中率如何?如果命中率很低,就没有必要写入缓存。
  2. 该业务数据是读操作多,还是写操作多,如果写操作多,频繁需要写入数据库,也没有必要使用缓存。
  3. 业务数据大小如何?如果要存储几百兆字节的文件,会给缓存带来很大的压力,有没有必要?

在考虑过这些问题后,如果觉得有必要使用缓存,那么就使用它。使用 Redis 作为缓存的读取逻辑如图 1 所示。


图1 Redis的缓存应用

从图 1 中可以知道以下两点。

  • 当第一次读取数据的时候,读取 Redis 的数据就会失败,此时会触发程序读取数据库,把数据读取出来,并且写入 Redis。
  • 当第二次及以后读取数据时,就直接读取 Redis,读到数据后就结束了流程,这样速度就大大提高了。

从上面的分析可知,大部分的操作是读操作,使用 Redis 应对读操作,速度就会十分迅速,同时也降低了对数据库的依赖,大大降低了数据库的负担。

分析了读操作的逻辑后,下面再来分析写操作的流程,如图 2 所示。


图2 写操作的流程

从流程可以看出,更新或者写入的操作,需要多个 Redis 的操作。如果业务数据写次数远大于读次数没有必要使用 Redis。如果是读次数远大于写次数,则使用 Redis 就有其价值了,因为写入 Redis 虽然要消耗一定的代价,但是其性能良好,相对数据库而言,几乎可以忽略不计。

高速读、写场合

在互联网的应用中,往往存在一些需要高速读/写的场合,比如商品的秒杀,抢红包,淘宝、京东的双十一活动或者春运抢票等。

以上这类场合在一个瞬间成千上万的请求就会达到服务器,如果使用的是数据库,一个瞬间数据库就需要执行成千上万的 SQL,很容易造成数据库的瓶颈,严重的会导致数据库瘫痪,造成 Java Web 系统服务崩溃。

在这样的场合的应对办法往往是考虑异步写入数据库,而在高速读/写的场合中单单使用 Redis 去应对,把这些需要高速读/写的数据,缓存到 Redis 中,而在满足一定的条件下,触发这些缓存的数据写入数据库中。先看看一次请求操作的流程图,如图 3 所示。


图3 Redis在高速读、写场合的应用

进一步论述这个过程:
当一个请求达到服务器,只是把业务数据先在 Redis 读/写,而没有进行任何对数据库的操作,换句话说系统仅仅是操作 Redis 缓存,而没有操作数据库,这个速度就比操作数据库要快得多,从而达到需要高速响应的效果。

但是一般缓存不能持久化,或者所持久化的数据不太规范,因此需要把这些数据存入数据库,所以在一个请求操作完 Redis 的读/写后,会去判断该高速读/写的业务是否结束。

这个判断的条件往往就是秒杀商品剩余个数为 0,抢红包金额为 0,如果不成立,则不会操作数据库;如果成立,则触发事件将 Redis 缓存的数据以批量的形式一次性写入数据库,从而完成持久化的工作。

假设面对的是一个商品秒杀的场景,从上面的流程看,一个用户抢购商品,绝大部分的场合都是在操作内存数据库 Redis,而不是磁盘数据库,所以其性能更为优越。只有在商品被抢购一空后才会触发系统把 Redis 缓存的数据写入数据库磁盘中,这样系统大部分的操作基于内存,就能够在秒杀的场合高速响应用户的请求,达到快速应答。

而现实中这种需要高速响应的系统会比上面的分析更复杂,因为这里没有讨论高并发下的数据安全和一致性问题,没有讨论有效请求和无效请求、事务一致性等诸多问题,这些将会在未来以独立教程讨论它。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容