Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列
举个例子,读取后,21行9列 的文件变成了 20行9列,并且最左侧标记了行标号,原文件第一行被当做标题
输出pandas.read_csv时,使用省略号(…)来代替显示全部的行和列,若想输出全部的列名,可以使用colums属性,使用tolist()函数转化为list
参数:
encoding : str, default None
指定字符集类型,通常指定为'utf-8'
header : int or list of ints, default ‘infer'
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。如果明确设定header=0 就会替换掉原来存在列名。header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉(例如本例中的2;本例中的数据1,2,4行将被作为多级标题出现,第3行数据将被丢弃,dataframe的数据从第5行开始。)。注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以header=0表示第一行数据而不是文件的第一行。
sep : str, default ‘,'
指定分隔符。如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘\s+',将使用python的语法分析器。并且忽略数据中的逗号。正则表达式例子:'\r\t'
其他重要参数:
filepath_or_buffer : 路径 URL 可以是http, ftp, s3, 和 file.
delimiter: 同sep
delimiter_whitespace: True or False 默认False, 用空格作为分隔符等价于spe=’\s+’如果该参数被调用,则delimite不会起作用
header: 指定第几行作为列名(忽略注解行),如果没有指定列名,默认header=0; 如果指定了列名header=None
names 指定列名,如果文件中不包含header的行,应该显性表示header=None
index_col: 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex。如果读取某文件,该文件每行末尾都有带分隔符,考虑使用index_col=False使panadas不用第一列作为行的名称。
usecols: 默认None 可以使用列序列也可以使用列名,如 [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’],选取的列
as_recarray:默认False , 将读入的数据按照numpy array的方式存储,0.19.0版本后使用 pd.read_csv(…).to_records()。 注意,这种方式读入的na数据不是显示na,而是给以个莫名奇妙的值
squeeze: 默认为False, True的情况下返回的类型为Series
prefix:默认为none, 当header =None 或者没有header的时候有效,例如’x’ 列名效果 X0, X1, …
mangle_dupe_cols :默认为True,重复的列将被指定为’X.0’…’X.N’,而不是’X’…’X’。如果传入False,当列中存在重复名称,则会导致数据被覆盖。
dtype: E.g. {‘a’: np.float64, ‘b’: np.int32} 指定数据类型
engine: {‘c’, ‘python’}, optional 选择读取的引擎目前来说C更快,但是Python的引擎有更多选择的操作
skipinitialspace: 忽略分隔符后的空格,默认false,
skiprows: list-like or integer or callable, default None 忽略某几行或者从开始算起的几行
skipfooter: 从底端算起的几行,不支持C引擎
nrows: int 读取的行数
na_values: 默认None NaN包含哪些情况,默认情况下, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’. 都表现为NAN
keep_default_na: 如果na_values被定义,keep_default_na为False那么默认的NAN会被改写。 默认为True
na_filter: 默认为True, 针对没有NA的文件,使用na_filter=false能够提高读取效率
skip_blank_lines 默认为True,跳过blank lines 而且不是定义为NAN
thousands 千分位符号,默认‘,’
decimal 小数点符号,默认‘.’
memory_map如果为filepath_or_buffer提供了文件路径,则将文件对象直接映射到内存上,并直接从那里访问数据。使用此选项可以提高性能,因为不再有任何I / O开销。
low_memory 默认为True 在块内部处理文件,导致分析时内存使用量降低,但可能数据类型混乱。要确保没有混合类型设置为False,或者使用dtype参数指定类型。请注意,不管怎样,整个文件都读入单个DataFrame中,请使用chunksize或iterator参数以块形式返回数据。 (仅在C语法分析器中有效)
注:与read_excel类似
参考:https://blog.csdn.net/weixin_39175124/article/details/79434022