神经网络中的权重初始化常用方法

技术交流QQ群:1027579432,欢迎你的加入!

1.权重初始化的重要性

  • 神经网络的训练过程中的参数学习时基于梯度下降算法进行优化的。梯度下降法需要在开始训练时给每个参数赋予一个初始值。这个初始值的选取十分重要。在神经网络的训练中如果将权重全部初始化为0,则第一遍前向传播过程中,所有隐藏层神经元的激活函数值都相同,导致深层神经元可有可无,这一现象称为对称权重现象。
  • 为了打破这个平衡,比较好的方法是对每层的权重都进行随机初始化,这样使得不同层的神经元之间有很好的区分性。但是,随机初始化参数的一个问题是如何选择随机初始化的区间。如果权重初始化太小,会导致神经元的输入过小,随着层数的不断增加,会出现信号消失的问题;也会导致sigmoid激活函数丢失非线性的能力,因为在0附件sigmoid函数近似是线性的。如果参数初始化太大,会导致输入状态太大。对sigmoid激活函数来说,激活函数的值会变得饱和,从而出现梯度消失的问题。

2.常用的参数初始化方法

  • 高斯分布初始化:参数从一个固定均值(比如0)和固定方差(比如0.01)的高斯分布进行随机初始化。
  • 均匀分布初始化:在一个给定的区间[-r,r]内采用均匀分布来初始化参数。超参数r的设置可以按照神经元的连接数量进行自适应的调整。
  • 初始化一个深层神经网络时,一个比较好的初始化策略是保持每个神经元输入和输出的方差一致

3.Xavier初始化

  • 当网络使用logistic激活函数时,xavier初始化可以根据每层的神经元数量来自动计算初始化参数的方差。假设第l层神经元的激活函数是logistic函数,对第l-1层到第l层的权重区间r可以设置为
    r=\sqrt{\frac{6}{n^{l-1}+n^{l}}}
    上式中n^{l}是第l层神经元个数,n^{l-1}是第l-1层神经元个数。
  • 对于tanh函数,r可以设置为
    r=4 \sqrt{\frac{6}{n^{l-1}+n^{l}}}
    假设第l层的一个隐藏神经元z^{l},其接收前一层的n^{l-1}个神经元的输出a_{i}^{(l-1)}i \in\left[1, n^{(l-1)}\right]
    z^{l}=\sum_{i=1}^{n^{(l-1)}} w_{i}^{l} a_{i}^{(l-1)}
  • 为了避免初始化参数使得激活函数变得饱和,需要尽量使得z^{l}处于激活函数的线性区间,也就是其绝对值较小的值,这时此神经元的激活值为f\left(z^{l}\right) \approx z^{l}。假设w_{i}^{l}a_{i}^{(l-1)}的均值都是0,并且相互独立,则a^{l}的均值为
    \mathbb{E}\left[a^{l}\right]=\mathbb{E}\left[\sum_{i=1}^{n^{(l-1)}} w_{i}^{l} a_{i}^{(l-1)}\right]=\sum_{i=1}^{n^{(l-1)}} \mathbb{E}\left[\mathbf{w}_{i}\right] \mathbb{E}\left[a_{i}^{(l-1)}\right]=0
    a^{l}的方差为
    \begin{aligned} \operatorname{var}\left[a^{l}\right] &=\operatorname{var}\left[\sum_{i=1}^{n^{(l-1)}} w_{i}^{l} a_{i}^{(l-1)}\right] \\ &=\sum_{i=1}^{n^{(l-1)}} \operatorname{var}\left[w_{i}^{l}\right] \operatorname{var}\left[a_{i}^{(l-1)}\right] \\ &=n^{(l-1)} \operatorname{var}\left[w_{i}^{l}\right] \operatorname{var}\left[a_{i}^{(l-1)}\right] \end{aligned}
  • 也就是说,输入信号的方差在经过此神经元后被放大或缩小了n^{(l-1)} \operatorname{var}\left[w_{i}^{l}\right]倍。为了使得在经过多层神经网络后,信号不被过分放大或缩小,尽可能保存每个神经元的输入和输出的方差一致,这样n^{(l-1)} \operatorname{var}\left[w_{i}^{l}\right]设为1比较合理,即
    \operatorname{var}\left[w_{i}^{l}\right]=\frac{1}{n^{(l-1)}}
  • 作为折中,同时考虑信号在前向和反向传播中都不被放大或减小,可以设置
    \operatorname{var}\left[w_{i}^{l}\right]=\frac{2}{n^{(l-1)}+n^{(l)}}
  • 在计算出参数的理想方差后,可以通过高斯分布或均匀分布来随机初始化参数。
  • 高斯分布初始化:如果采用高斯分布来随机初始化参数时,连接权重w_{i}^{l}可以按\mathcal{N}\left(0, \sqrt{\frac{2}{n^{(l-1)}+n^{(l)}}}\right)的高斯分布进行初始化。
  • 均匀分布初始化:假设算计变量x在区间[a,b]内服从均匀分布,则其方差为
    \operatorname{var}[x]=\frac{(b-a)^{2}}{12}
  • 因此,如果采用区间为[-r,r]的均匀分布来初始化w_{i}^{l},并满足\operatorname{var}\left[w_{i}^{l}\right]=\frac{2}{n^{(l-1)}+n^{(l)}},则r的取值为
    r=\sqrt{\frac{6}{n^{l-1}+n^{1}}}

4.He初始化

  • 当第l层神经元使用ReLU激活函数时,通常有一般的神经元输出为0,因此其分布的方差也近似为使用logistic作为激活函数时的一半。这样,只考虑前向传播时,参数w_{i}^{l}的理想方差为
    \operatorname{var}\left[w_{i}^{l}\right]=\frac{2}{n^{(l-1)}}
    其中n^{l-1}是第l-1层的神经元个数。
  • 因此,当使用ReLU激活函数时,如果采用高斯分布来初始化参数w_{i}^{l},其方差为\frac{2}{n^{(l-1)}};如果采用区间为[-r,r]的均匀分布来初始化参数w_{i}^{l}时,则r=\sqrt{\frac{6}{n^{l-1}}}

5.参考书籍

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容