Transformer模型解析记录

1.模型整体结构

图1 Transformer结构图

整个Transformer模型由Encoder和Decoder两部分组成。Encoder负责对输入数据的编码,而Decoder负责对编码后的数据进行解码。

Encoder由N个结构相同,参数不共享的模块组成,每个模块又由多头自注意力层和全连接层组成,其中多头自注意力层和全连接层都加上了残差连接和layer normalization。

Decoder与Encoder结构类似,相比于Encoder,Decoder部分多了一个Multi-Head Attention,第一个Multi-Head Attention采用Masked操作,第二个Multi-Head Attention的 K 和 V 使用Encoder的输出,而Q使用上一个Decoder block的输出。
Decoder的输出通过一个线性层和softmax输出下一个翻译单词的概率。

2.Encoder

Encoder由N个结构相同,参数不共享的的Layer组成(论文中N=6),也即图1左侧的单元,最左边有个“Nx”。
每个Layer由Multi-Head AttentionFeed-Forward两个sub_layer组成。其中每个sub_layer都加了残差连接(Residual Connect)和归一化(Normalization)操作。则每个sub_layer的输出可表示为:

2.1.Multi-Head Attention

Muti-Head Attention从结构上来看就是通过h个不同的线性变换将输入X_Q、X_K、X_V投影到h个不同的Q、K、V组合,最后将h个不同的Attention结果拼接起来,最后经过一个Liner层得到Muti-Head Attention的输出。

其中,W_i^Q (d_{model}\times d_k)、W_i^K(d_{model}\times d_k)、W_i^V (d_{model}\times d_v)W^O(d_v\times d_{model})

Muti-Head Attention输出的维度是[batch\_szie\times seq\_len, num\_heads\times head\_size]

关于Attention的详细介绍,可以参考之前文档:

2.2.Feed Forward

Feed Forward也称Position-wise feed-forward networks,该层主要提供非线性变换。之所以是position-wise是因为过线性层时每个位置i的变换参数是一样的。

该层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应公式为:
max(0, XW_1 + b_1)W_2 + b_2

:Attention输出之后的结果会和W^Q相乘来进行维度变换,那这里为什么又要增加一个2层的FFN网络呢?
:FFN网络的加入给模型增加了非线性(Relu激活函数),增加了模型的表现能力。当然去掉FFN层也是可以的,只不过效果上会差些。

3.Decoder

Decoder是图1的右半部分,与左半部分的Encoder类似,但又存在一些区别。

Decoder比Encoder多了一个Multi-Head Attention,第一个Multi-Head Attention采用Masked操作,因为在生成任务中,前面的词语是看不到后面词语的信息的,因此需要加入Masked来避免信息泄露。第二个Multi-Head Attention输入的K、V是根据Encoder的输出编码矩阵映射而来,而Q是根据上一个Decoder的输出映射而来。

最后有一个 Softmax 层计算下一个翻译单词的概率。

模型在解码的过程中需要注意的是训练和预测不一样。
在训练时,解码是一次全部decode出来,用上一步的ground truth来预测(mask矩阵也会改动,让解码时看不到未来的token);
而预测时,因为没有ground truth了,需要一个个预测。

4.Position Embedding

上面简单介绍了EncoderDecoder模块,下面简单介绍一下Transformer的Position Embedding。

引入Position Embedding主要是为了弥补Transformer模型对位置信息的不足,将Position Embedding与token Embedding相加后,即可保留各个token的位置信息。

论文作者提出了两种添加位置信息的的方法:
一种方法是直接用不同频率的正余弦函数直接计算各个token的位置id,公式如下:

另一种方法是直接学习出一个Position Embedding。

通过实验发现,两种方法结果差不多,最后作者选择了第一种方法。

5.总结

Transformer 与 RNN 不同,可以比较好地并行训练。

Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。

Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。

Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

参考资料

Transformer 模型详解 (推荐)
【NLP】Transformer模型原理详解
【经典精读】Transformer模型深度解读

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容