hive/impala使用列式存储追加一列数据的可行性

我们知道parquet文件格式是不能进行update操作的。但是是否可以对其进行添加一列数据呢?

先看看parquet文件长什么样

Parquet文件是以二进制方式存储的,是不可以直接读取和修改的,Parquet文件是自解析的,文件中包括该文件的数据和元数据。在HDFS文件系统和Parquet文件中存在如下几个概念:

  1. HDFS块(Block):它是HDFS上的最小的副本单位,HDFS会把一个Block存储在本地的一个文件并且维护分散在不同的机器上的多个副本,通常情况下一个Block的大小为256M、512M等。
  2. HDFS文件(File):一个HDFS的文件,包括数据和元数据,数据分散存储在多个Block中。
  3. 行组(Row Group):按照行将数据物理上划分为多个单元,每一个行组包含一定的行数,在一个HDFS文件中至少存储一个行组,Parquet读写的时候会将整个行组缓存在内存中。
  4. 列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。不同的列块可能使用不同的算法进行压缩。
  5. 页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。

通常情况下,在存储Parquet数据的时候会按照HDFS的Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。


Parquet文件结构

上图展示了一个Parquet文件的结构,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length存储了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和当前文件的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页,但是在后面的版本中增加。

从parquet文件格式中可以看出,如果我们需要为文件添加一列数据的话,需要对每个row group 添加列,这样势必会打破原有的数据偏移量,也有可能因为多了一列造成后续的row group全部变化,字典页和索引页也可能造成变化;另外在Footer中也需要根据新的数据列重新对每个偏移量进行计算。

所以基于此,并未看到parquet在加列操作中,是在原文件中添加(甚至在使用impala对table加列后,原parquet文件schema都未曾变化),而往往是新生成一个parquet文件。

示例

原表 entry, uuid, age, name 三个字段,建表指定parquet存储,并插入两条数据,在hdfs上生成一个parquet文件。
然后在impala执行add column操作,添加tel字段,并向其插入一些数据,生成一个新的parquet文件。通过parquet-Hadoop API直接读取parquet文件信息,获得

uuid->age->name->
row count: 2
{"uuid":"1",age":"20",name":"bob"}
{"uuid":"2",age":"10",name":"tom"}
uuid->age->name->tel->
row count: 6
{"uuid":"1",age":"20",name":"bob",tel":"186152372"}
{"uuid":"2",age":"30",name":"tom",tel":"186152372"}
{"uuid":"3",age":"40",name":"laiwb2",tel":"186152372"}
{"uuid":"4",age":"22",name":"bingo1",tel":"186152372"}
{"uuid":"6",age":"23",name":"feng",tel":"186152372"}
{"uuid":"7",age":"24",name":"bixians",tel":"186152372"}

从打印的信息来看,parquet文件1 schema只有三个字段uuid,age,name,这个文件就是建表时插入的,后面在add column后又插入了6条数据,这时,新生成的parquet文件的metadata多了一个tel,数据页中数据也多了tel列。
读取parquet文件主要的代码片段:

ParquetMetadata readFooter = ParquetFileReader.readFooter(conf, path, ParquetMetadataConverter.NO_FILTER);
// parquet 文件的 schema信息
MessageType schema = readFooter.getFileMetaData().getSchema();
List<Type> columnInfos = schema.getFields();
for (Type type : columnInfos) {
    System.out.print(type.getName() + "->");
}
// 每个 row group 的数量
List<BlockMetaData> blockMeta = readFooter.getBlocks();
for (BlockMetaData bl : blockMeta) {
    System.out.println("row count: " + bl.getRowCount());
}

ParquetReader<Group> reader = ParquetReader.builder(new GroupReadSupport(), path).withConf(conf).build();
int count = 0;
Group recordData = reader.read();

while (count < 10 && recordData != null) {
    StringBuilder builder = new StringBuilder();
    builder.append("{\"");
    for (int j = 0; j < columnInfos.size(); j++) {
        if (j < columnInfos.size() - 1) {
            String columnName = columnInfos.get(j).getName();
            String value = recordData.getValueToString(j, 0);
            builder.append(columnName + "\":\"" + value + "\",");
        } else {
            String columnName = columnInfos.get(j).getName();
            String value = recordData.getValueToString(j, 0);
            builder.append(columnName + "\":\"" + value + "\"}");
        }
    }

    System.out.println(builder.toString());
    count++;
    recordData = reader.read();
}

然后drop name字段(parquet文件不会有什么变动,只是元数据信息变化),在hive元数据中只有uuid,age,tel三个字段,使用impala查询和hive查询出现了不同数据。hive能够查询匹配出这三个字段的数据来,但impala却查询出的是uuid, age, name数据,看样子impala是根据元数据信息逐个取值的,并不是根据hive元数据和parquet元数据对应取值。

综上,parquet 理论上可以追加一列,但是代价比较高,需要对row group 进行修改,并且需要同步parquet metadata信息,修改数据的offerset和schema等,并且parquet-Hadoop也未提供相应的方法。


后续~~~

列式存储的另外一种存储格式ORC,与parquet的对比图。


parquet vs orc

从parquet与orc对比图中可以知道,orc支持ACID和update操作,接下来说说ORC。
和Parquet类似,它并不是一个单纯的列式存储格式,仍然是首先根据行组分割整个表,在每一个行组内进行按列存储。ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,并且文件中的数据尽可能的压缩以降低存储空间的消耗,目前也被Spark SQL、Presto等查询引擎支持,但是Impala对于ORC目前没有支持,仍然使用Parquet作为主要的列式存储格式(可能parquet是cloudera自家开发的吧,竞品ORC架构和parquet又相似度很高)。

ORC文件结构

和Parquet类似,ORC文件也是以二进制方式存储的,所以是不可以直接读取,ORC文件也是自解析的,它包含许多的元数据,这些元数据都是同构ProtoBuffer进行序列化的。ORC的文件结构见下图,其中涉及到如下的概念:

  1. ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中可以包含多个stripe,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row group的概念。
  2. 文件级元数据:包括文件的描述信息PostScript、文件meta信息(包括整个文件的统计信息)、所有stripe的信息和文件schema信息。
  3. stripe:一组行形成一个stripe,每次读取文件是以行组为单位的,一般为HDFS的块大小,保存了每一列的索引和数据。
  4. stripe元数据:保存stripe的位置、每一个列的在该stripe的统计信息以及所有的stream类型和位置。
  5. row group:索引的最小单位,一个stripe中包含多个row group,默认为10000个值组成。
  6. stream:一个stream表示文件中一段有效的数据,包括索引和数据两类。索引stream保存每一个row group的位置和统计信息,数据stream包括多种类型的数据,具体需要哪几种是由该列类型和编码方式决定。
ORC文件结构

从ORC数据格式来看,发现其结构和parquet很类似,也是先分行,每个row group里面,对数据进行列式存储,然后提供元数据(包括每个column的offset,字典表,压缩算法等等)。在parquet里面我谈到,如果想往parquet追加一列数据的话,需要往每个row group里面添加列,需要打破原有的column chunk,并且重新更新footer元数据信息。而ORC也类似,需要增添的列打摊到每个stripe,在row data里面添加一列,更新index和stream。
因为HDFS是一次写的文件系统,ORC是一次写的文件格式,因此ORC为了支持ACID操作,采用基础文件和增量文件来实现insert,update,delete。大致思想是transaction会被存储在增量文件中,并且当delte变多会自动合并,当查询数据时,将原数据与delta数据排序,然后取最近的更改。详情见ACID

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容