kafka优化笔记

1 mq的作用

解耦、异步、削峰填谷

2 kafka架构

kafka架构

1)Producer :消息生产者,就是向 kafka broker 发消息的客户端;
2)Consumer :消息消费者,向 kafka broker 取消息的客户端;
3)Consumer Group (CG):消费者组,由多个 consumer 组成。消费者组内每个消费者负
责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
4)Broker :一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker
可以容纳多个 topic。
5)Topic :可以理解为一个队列,生产者和消费者面向的都是一个 topic;
6)Partition:为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,
一个 topic 可以分为多个 partition,每个 partition 是一个有序的队列;
7)Replica:副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。
8)leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是 leader。
9)follower:每个分区多个副本中的“从”,实时从 leader 中同步数据,保持和 leader 数据
的同步。leader 发生故障时,某个 follower 会成为新的 follower。

3 kafka存储机制

1)topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。
2)由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个 segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic 名称+分区序号。例如,first 这个 topic 有三个分区,则其对应的文件夹为 first-0,first-1,first-2。
3)index 和 log 文件以当前 segment 的第一条消息的 offset 命名。“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中 message 的物理偏移地址。

4 producer分区原则

producer 发送的数据封装成一个 ProducerRecord 对象。
1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition数进行取余得到 partition 值;
3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition值,也就是常说的 round-robin 算法。

5 生产者丢数据?

1)副本同步策略

  • 半数以上完成同步,就发送 ack 延迟低 选举新的 leader 时,容忍 n 台节点的故障,需要 2n+1 个副
  • 本全部完成同步,才发送ack 选举新的 leader 时,容忍 n 台 节点的故障,需要 n+1 个副本 延迟高
val properties = new Properties
properties.put("bootstrap.servers", broker_list)
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
properties.put("enable.idempotence",(true: java.lang.Boolean)) //幂等性、开启事务
properties.put(ProducerConfig.ACKS_CONFIG, "-1")
var producer: KafkaProducer[String, String] = null
try
  producer = new KafkaProducer[String, String](properties)
catch {
  case e: Exception => e.printStackTrace()
}
producer
  • 极端情况设置ProducerConfig.RETRY_CONFIG
    2)ISR
  • Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower长时间 未 向 leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR , 该 时 间 阈 值 由replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。

6 kafka丢数据?

1)给 topic 设置 replication.factor 参数:这个值必须大于 1,要求每个 partition 必须有至少 2 个副本。
2)在 Kafka 服务端设置 min.insync.replicas 参数:这个值必须大于 1,这个是要求一个 leader 至少感知到有至少一个 follower 还跟自己保持联系,没掉队,这样才能确保 leader 挂了还有一个 follower 吧。

7 消费者丢数据?

  • 关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢
// kafka消费者配置
  var kafkaParam = collection.mutable.Map(
    "bootstrap.servers" -> broker_list, //用于初始化链接到集群的地址
    "key.deserializer" -> classOf[StringDeserializer],
    "value.deserializer" -> classOf[StringDeserializer],
    //用于标识这个消费者属于哪个消费团体
    "group.id" -> "gmall_group",
    //latest自动重置偏移量为最新的偏移量
    "auto.offset.reset" -> "latest",
    //如果是true,则这个消费者的偏移量会在后台自动提交,但是kafka宕机容易丢失数据
    //如果是false,会需要手动维护kafka偏移量
    "enable.auto.commit" -> (false: java.lang.Boolean)
  )

// 存储每个分区的offset
def saveOffset(topic: String, groupId: String, offsetRanges: Array[OffsetRange]): Unit = {
    //拼接redis中操作偏移量的key
    var offsetKey = "offset:" + topic + ":" + groupId

    //定义java的map集合,用于存放每个分区对应的偏移量
    val offsetMap: util.HashMap[String, String] = new util.HashMap[String, String]()

    //对offsetRanges进行遍历,将数据封装offsetMap
    for (offsetRange <- offsetRanges) {
      val partitionId: Int = offsetRange.partition
      val fromOffset: Long = offsetRange.fromOffset
      val untilOffset: Long = offsetRange.untilOffset

      offsetMap.put(partitionId.toString, untilOffset.toString)
      println("保存分区" + partitionId + ":" + fromOffset + "----->" + untilOffset)
    }

    val jedis: Jedis = MyRedisUtil.getJedisClient()
    jedis.hmset(offsetKey, offsetMap)
    jedis.close()
  }

8 重复消费

  • Kafka 实际上有个 offset 的概念,就是每个消息写进去,都有一个 offset,代表消息的序号,然后 consumer 消费了数据之后,每隔一段时间(定时定期),会把自己消费过的消息的 offset 提交一下,表示“我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的 offset 来继续消费吧”。
  • 新版的 Kafka 已经将 offset 的存储从 Zookeeper 转移至 Kafka brokers,并使用内部位移主题 __consumer_offsets 进行存储。
  • producer事务。为了实现跨分区跨会话的事务,需要引入一个全局唯一的 Transaction ID,并将 Producer获得的PID 和Transaction ID 绑定。这样当Producer 重启后就可以通过正在进行的 Transaction ID 获得原来的 PID。
// 开启producer事务
properties.put("enable.idempotence",(true: java.lang.Boolean)) //幂等性、开启事务
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容