姓名:苏彦恺
学号:14020150008
【嵌牛导读】:20世纪60年代以来,卫星通信迅速发展,在军事和民用领域得到了十分广泛的应用;70~80年代达到了鼎盛时期。80年代末、90年代以后,由于光纤通信和地面蜂窝移动通信的崛起,传统的国际、国内长途通信和陆地移动通信业务己不再属于卫星通信的主要领地。在接下来的相互竞争、互为补充的发展中,卫星通信扬长避短,重新找到了自己的位置。近几年来,卫星通信在美、欧、日等发达国家实现了产业化和国际化,年收入达900多亿美元,年均增长率高达13%。毫无疑问,在军事应用中,卫星通信仍然是其主要的通信手段,是其他通信手段所不能取代的;在经济、政治和文化领域中,卫星通信不仅有效地补充了其他通信手段的不足或不能(如海事、远程航空的通信等),而且作为大众传媒(如视频和音频广播),“最后一公里到户”的接入,防灾、救灾、处理突发事件的应急通信等,均大有作为。
【嵌牛鼻子】:卫星通信;宽带卫星通信;卫星移动通信;空间通信网;通信卫星;
【嵌牛提问】:卫星通信有什么样的特点?又有哪些关键技术?
【嵌牛正文】:
卫星通信的特点
卫星通信与地面通信方式相比主要具有以下特点:
(1)覆盖范围广:地球静止轨道(GEO)卫星距离地面35786km,只需要三颗GEO卫星就能覆盖全球除两极以外的所有区域;(2)通信系统容量大:卫星频率资源相当丰富,能提供宽带通信服务,并可方便地向更高频段扩展;(3)快速向市场提供服务:建立地面通信设施迅速,开展新的业务和应用周期短;(4)灵活性高:卫星通信系统的建立不受地理条件限制,无论是大城市还是偏远山区或是海岛都可建立通信,且通信距离与成本无关;(5)灾难容忍性强:在自然灾害如地震、台风发生时仍能提供稳定的通信;(6)通信链路传输时延大:信号在GEO卫星与地面之间往返传输的时间约为0.25s,对时间敏感度高的应用如语音通话会受到通信延迟的影响;(7)通信链路传输衰减大:通信链路传输距离很远,造成了信号衰减较大,且高频段(如Ku/Ka频段)易受雨衰、雪衰等不利天气影响;(8)信号视距传播:采用高频段信号通信,传输易受障碍物影响。然而,长期以来卫星通信一直作为地面固定、无线或移动通信系统的一种补充通信方式。例如,早期的卫星通信只是用在海运领域,这是由于地面通信网络受限于覆盖范围和技术,无法在海上提供服务。卫星通信系统要想在与地面通信系统的竞争中发挥出更重要的作用,还需要克服自身通信特性上的一些不足。例如:对于网络层存在的传输时延长、丢包率高及链路干扰等问题,需要采用新的算法和协议对网络层进行优化,从而使卫星通信适合于个人移动通信和宽带互联网接入;在物理层,由于卫星通信的视距传输特性,限制了部分区域特别是繁华市区的用户接入卫星网络,需要采用新的通信网络架构来推进卫星通信网络和地面通信网络的融合。同时,信息通信技术的发展也促使我们从未来互联网发展的角度来重新定义卫星通信的作用。未来互联网一定是全球“任何地方、任何时间”都无处不在,必须能为社会在紧急情况下提供必要的帮助,而且必须是稳定可靠的。地面蜂窝网络受限于自身的局域覆盖属性,不能有效的满足这些需求。因此,未来互联网需要构建和融合两个基本通信网络:由地面蜂窝网络组成的局域网部分和由卫星网络组成的全局网部分。在这种新的通信架构下,卫星通信将充分发挥其全球通信无缝覆盖的优势而发展成为主导地位,不仅仅只是地面移动通信的辅助方式。
近期,卫星通信新技术的迅速发展和通信商业市场需求的不断增长,极大地促进了卫星通信业务和通信模式的创新发展,使当前成为卫星通信历史上最活跃的时期之一。本文介绍了卫星通信几种关键的技术及其近期的进展。
多波束天线技术
天线技术是卫星通信的关键技术之一,由于卫星通信链路传输距离很远造成了信号衰减很大,例如,GEO卫星的C频段信号(3.4GHz-4.2GHz)的链路衰减通常在200dB左右。为保证稳定可靠的通信,需要地面站采用高增益天线和高灵敏度接收机,因此天线的尺寸和成本成为限制卫星通信发展的严重障碍。早期采用甚小孔径终端(VSAT,Very Small Aperture Terminal)技术来缓解这一问题,天线系统由一个大型中心站与大量的小口径天线终端站共同构成一个星型网,利用中心站天线G/T值(天线增益对噪声温度比)高的优势来弥补小站天线因天线口径小、增益低导致链路余量不足的弱点。然而,VSAT天线系统的灵活性不足,并且无法利用频率复用技术来提高频谱效率,卫星通信天线的发展已经向了多波束天线。多波束天线(Multiple Beam Antenna)从2000年开始迅速发展,由于它能够实现高增益的点波束覆盖,又能在广域覆盖范围中实现频率复用,从而在卫星通信天线系统中得到广泛应用。多波束天线与数字波束成形不同,它使用大量的点波束实现广域范围覆盖,可用带宽被分为很多个子波段,从而在大量空间独立的点波束之间可以实现每个子波段的复用,这与地面蜂窝通信网络相似,显著地增加了频谱利用率和卫星通信容量。在卫星通信系统中使用多波束天线的主要问题是相邻波束之间的干扰。多波束天线技术提高了转发器的功率使用效率和频谱资源利用率,是发展大容量卫星通信系统和增强卫星通信市场竞争力的关键技术。目前,多波束天线已经广泛应用在移动卫星通信业务(Inmarsat,Thuraya,ACeS,Iridium等),区域性直播星(DTV-4S,DTV-7S,Echostar-10,Echostar-14等),个人通信卫星(ViaSat-1,Jupiter-1,Anik-F等)和军事通信卫星(WGS,MUOS等)
卫星宽带通信
对于互联网接入而言,卫星通信通常被作为传统的接入网络(如3G、电缆或ADSL)无法为用户提供服务情况下的一种补充通信方式。近几年来,通信行业对高数据率传输业务和宽带多媒体应用的需求空前增长,同时卫星通信技术快速发展,如多波束天线、星上处理、频谱复用技术,尤其是新的TCP版本和改进的TCP加速机制,显著提高了基于卫星链路的TCP性能,使卫星宽带通信成为现实。随着宽带卫星通信系统和空间组网技术的发展,互联网逐渐从地面网络扩展到空间网络,卫星通信逐步进入互联网应用时代。空间网络是以同步或中低轨道卫星等空间平台为载体,通过一体化互联网支持实时采集、传输和处理大数据,为用户提供更大范围和更高质量的互联网服务。Google公司于2014年宣布将投资10亿美元发射180颗低轨小卫星,提供互联网业务;近期,One Web公司启动世界上最大的卫星互联网计划,将发射648颗卫星建立一个覆盖全球的低轨道卫星网络,后续还将发射2400颗卫星,以提供宽带互联网接入服务。目前正在应用的典型卫星宽带系统是国际海事卫星公司(Inmarsat)的Global Xpress全球移动卫星宽带系统[37]。Global Xpress是世界第一个商用高速宽带卫星通信网络,运行在Ka频段,由三颗GEO卫星组成,每颗卫星提供89个Ka点波束。从2013年12月发射第一颗卫星Inmarsat-5F1到2015年8月成功发射第三颗卫星。
Inmarsat-5F1以来,Global Xpress的三颗卫星提供全球超过99%覆盖区域的高速移动宽带通信业务。Global Xpress在容量、吞吐量、用户终端成本和通话费用方面有了显著的改善。系统使用Ka波段(2.5GHz可用频谱资源),是Ku波段带宽的5倍,通过60cm小终端支持下行高达50Mb/s和上行5Mb/s的高数据率,前向链路采用了TDMA接入,回传链路采用了自适应调制和编码,以及采用了功率控制和分集技术等来弥补衰落造成的影响,提高了信道利用率。通信技术和宽带网络发展水平虽然有显著的提升,但宽带通信的普及程度还相对比较薄弱。ITU在2015年9月份公布的研究报告显示,地球上仍有40亿人无法接入互联网,其中90%人口生活在发展中国家。工信部发布的统计数据表明,截至2015年8月底,我国尚有约5万个未通宽带网络的行政村,农村宽带家庭普及率比城市地区低约40个百分点。构建卫星宽带通信网络有望改变这一局面。由于卫星通信具有广泛的覆盖范围,较高的成本效率尤其是在低或中等的人口密度的区域快速提供通信服务,可以预见,卫星通信系统将扩展高质量的电信网络,实现无处不在的宽带网络接入,在全球宽带通信服务中发挥重要的作用。
星上处理
具有星际链路、星上处理和交换能力是对现代卫星移动通信系统的基本要求。对于星际链路,核心是解决天线的捕获、跟踪和瞄准问题;对于星上处理,目前国内己有星上解调、解扩和解跳的较成熟技术,主要问题在于可靠性、重量和功耗等。虽然国内己经完成了具有小规模星上处理与交换功能的样机研制,但受星载器件水平的限制,在星上实现具有综合业务交换功能和动态拓扑条件下移动路由功能的交换机仍是一项需要重点攻关的关键技术。
星地融合
地面通信系统无法实现真正的“无缝覆盖”,在人口密度较低的农村地区通常没有足够的蜂窝网,在海上和航空领域,更是无法通过地面网络来实现通信。卫星通信获得成功的关键是它的广域覆盖和快速向市场提供新业务,在市场相对较小的海上和航空领域卫星通信将长期保持优势地位,但是对于市场庞大的陆地领域,如:固定、移动通信和广播业务,将取决于卫星网络与地面通信网络融合通信(星地融合通信)。卫星通信新技术的发展,如多波束天线和星上处理等技术正在使星地融合通信成为现实。
长期以来,由于地面蜂窝移动通信能够提供可靠且价格合理的服务,而卫星通信所需要的视距传播在市区难以保证,激烈的市场竞争和自身通信特性的限制导致移动卫星通信业务普及率很低。在21世纪初,为了克服上述的一些问题,并帮助卫星通信进入主流市场,卫星通信运营商成功得到了电信管理部门在世界许多地区组建星地融合通信网络的授权,通过增加地面部分扩展卫星通信网络,开启了真正无所不在的卫星通信,从而彻底改变了移动卫星通信。美国的FCC(Federal Communications Commission)和欧洲的European Commission已经授权卫星运营商增加地面辅助基站(ATC,Ancillary Terrestrial Component)到卫星网络。星地融合通信网络将会综合利用地面蜂窝移动通信(频率复用和非视距传播的特性)和卫星通信(广域覆盖范围的特性)双方的共同优点。例如,可以利用卫星网络的抗毁性和地面4G网络的高效性,来为自然或人为灾害提供应急通信
结束语
卫星通信技术近期发展的关键是高效的功率利用和带宽调制、传输链路的自适应编码调制、完善突发性业务接入技术、资源预留算法、星上处理、网络融合和低成本移动终端,从而确保卫星网络与地面蜂窝系统的无缝融合,提供稳定可靠的卫星宽带通信服务,同时有效地利用卫星轨道和频谱资源。
卫星通信在未来信息通信系统中的发挥着关键的作用,卫星通信的无缝覆盖和大容量的优势将产生巨大的经济价值和社会效益,其发展前景非常具有吸引力。同时,卫星通信也面临着很大的挑战。例如,卫星轨道和频谱资源正越来越紧缺、卫星干扰越来越频繁、通信网络融合中高效切换技术和频谱分配策略需要进一步的完善、卫星宽带通信中的带宽管理和服务质量控制等。
[1]卫星通讯导论[M].朱立东.电子工业出版社.2009
[2]卫星移动通信系统[M].张更新,张杭.北京:人民邮电出版社,2001
[3]卫星通信技术的新发展[J].甘仲民,张更新.通信学报
[4]浅论我国卫星移动通信系统的发展思路和策略[J].张更新,甘仲民.数字通信世界.2005(07)
[5]宽带卫星通信概述[J].刘剑,黄国策,宋爱民.数据通信.2003(01)
[6]卫星通信的近期发展与前景展望[J].易克初,李怡,孙晨华,南春国.通信学报.2015(06)
[7]卫星通信多波束天线综述[J].周乐柱,李斗,郭文嘉.电子学报.2001(06)
[8]应急通信工作探讨与展望[J].史光耀,陈守益,吴峰.移动通信. 2015(13)
[9]北斗卫星导航系统的发展与思考[J].谭述森.宇航学报. 2008(02)
[10]卫星通信技术发展概述[J].张海深.黑龙江科技信息. 2013(05)