TCOP协议简介
TCP是一个面向连接的传输层协议,虽然TCP不属于ISO制定的协议集,但由于其在商业界和工业界的成功应用,它已成为事实上的网络标准,广泛应用于各种网络主机间的通信。
作为一个面向连接的传输层协议,TCP的目标是为用户提供可靠的端到端连接,保证信息有序无误的传输。它除了提供基本的数据传输功能外,还为保证可靠性采用了数据编号、校验和计算、数据确认等一系列措施。它对传送的每个数据字节都进行编号,并请求接收方回传确认信息(ACK)。发送方如果在规定的时间内没有收到数据确认,就重传该数据。
(1) 数据编号使接收方能够处理数据的失序和重复问题。
(2) 数据误码问题通过在每个传输的数据段中增加校验和予以解决,接收方在接收到数据后检查校验和,若校验和有误,则丢弃该有误码的数据段,并要求发送方重传。
(3) 流量控制也是保证可靠性的一个重要措施,若无流控,可能会因接收缓冲区溢出而丢失大量数据,导致许多重传,造成网络拥塞恶性循环。
(4) TCP采用可变窗口进行流量控制,由接收方控制发送方发送的数据量。
TCP为用户提供了高可靠性的网络传输服务,但可靠性保障措施也影响了传输效率。因此,在实际工程应用中,只有关键数据的传输才采用TCP,而普通数据的传输一般采用高效率的UDP。
在socket网络程序中,TCP和UDP分别是面向连接和非面向连接的。因此TCP的socket编程,收发两端(客户端和服务器端)都要有成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小、数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。
对于UDP,不会使用块的合并优化算法,这样,实际上目前认为,是由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。所以UDP不会出现粘包问题。
在介绍TCP之前先普及下两个相关的概念,长连接和短连接。
1、长连接
Client方与Server方先建立通讯连接,连接建立后不断开, 然后再进行报文发送和接收。
2、短连接
Client方与Server每进行一次报文收发交易时才进行通讯连接,交易完毕后立即断开连接。此种方式常用于一点对多点通讯,比如多个Client连接一个Server。
保护消息边界和流
什么是保护消息边界和流?
保护消息边界,就是指传输协议把数据当作一条独立的消息在网上传输,接收端只能接收独立的消息。也就是说存在保护消息边界,接收端一次只能接收发送端发出的一个数据包。而面向流则是指无保护消息保护边界的,如果发送端连续发送数据,接收端有可能在一次接收动作中,会接收两个或者更多的数据包。
例如,我们连续发送三个数据包,大小分别是2k,4k ,8k,这三个数据包,都已经到达了接收端的网络堆栈中,如果使用UDP协议,不管我们使用多大的接收缓冲区去接收数据,我们必须有三次接收动作,才能够把所有的数据包接收完。而使用TCP协议,我们只要把接收的缓冲区大小设置在14k以上,我们就能够一次把所有的数据包接收下来,只需要有一次接收动作。
注意:
这就是因为UDP协议的保护消息边界使得每一个消息都是独立的。而流传输却把数据当作一串数据流,他不认为数据是一个一个的消息。所以有很多人在使用tcp协议通讯的时候,并不清楚tcp是基于流的传输,当连续发送数据的时候,他们时常会认识tcp会丢包。其实不然,因为当他们使用的缓冲区足够大时,他们有可能会一次接收到两个甚至更多的数据包,而很多人往往会忽视这一点,只解析检查了第一个数据包,而已经接收的其他数据包却被忽略了。所以大家如果要作这类的网络编程的时候,必须要注意这一点。
结论:
(1)TCP为了保证可靠传输,尽量减少额外开销(每次发包都要验证),因此采用了流式传输,面向流的传输,相对于面向消息的传输,可以减少发送包的数量,从而减少了额外开销。但是,对于数据传输频繁的程序来讲,使用TCP可能会容易粘包。当然,对接收端的程序来讲,如果机器负荷很重,也会在接收缓冲里粘包。这样,就需要接收端额外拆包,增加了工作量。因此,这个特别适合的是数据要求可靠传输,但是不需要太频繁传输的场合(两次操作间隔100ms,具体是由TCP等待发送间隔决定的,取决于内核中的socket的写法)。
(2)UDP,由于面向的是消息传输,它把所有接收到的消息都挂接到缓冲区的接受队列中,因此,它对于数据的提取分离就更加方便,但是,它没有粘包机制,因此,当发送数据量较小的时候,就会发生数据包有效载荷较小的情况,也会增加多次发送的系统发送开销(系统调用,写硬件等)和接收开销。因此,应该最好设置一个比较合适的数据包的包长,来进行UDP数据的发送。(UDP最大载荷为1472,因此最好能每次传输接近这个数的数据量,这特别适合于视频,音频等大块数据的发送,同时,通过减少握手来保证流媒体的实时性)。
粘包问题分析与对策
TCP粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。
出现粘包现象的原因是多方面的,它既可能由发送方造成,也可能由接收方造成。
什么时候考虑粘包问题
1、如果利用tcp每次发送数据,就与对方建立连接,然后双方发送完一段数据后,就关闭连接,这样就不会出现粘包问题(因为只有一种包结构,类似于http协议)。
关闭连接主要是要双方都发送close连接(参考tcp关闭协议)。如:A需要发送一段字符串给B,那么A与B建立连接,然后发送双方都默认好的协议字符如"hello give me sth abour yourself",然后B收到报文后,就将缓冲区数据接收,然后关闭连接,这样粘包问题不用考虑到,因为大家都知道是发送一段字符。
2、如果发送数据无结构,如文件传输,这样发送方只管发送,接收方只管接收存储就ok,也不用考虑粘包。
3、如果双方建立连接,需要在连接后一段时间内发送不同结构数据,如连接后,有好几种结构:
1)“hellogive me sth abour yourself”
2)“Don’tgive me sth abour yourself”
那这样的话,如果发送方连续发送这个两个包出去,接收方一次接收可能会是"hellogive me sth abour yourselfDon’t give me sth abour yourself"这样接收方就傻了,到底是要干嘛?不知道,因为协议没有规定这么诡异的字符串,所以要处理把它分包,怎么分也需要双方组织一个比较好的包结构,所以一般可能会在头加一个数据长度之类的包,以确保接收。
粘包出现的原因
简单得说,在流传输中出现,UDP不会出现粘包,因为它有消息边界(参考Windows网络编程)
1、发送端需要等缓冲区满才发送出去,造成粘包。
2、接收方不及时接收缓冲区的包,造成多个包接收。
具体点:
(1)发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一包数据。若连续几次发送的数据都很少,通常TCP会根据优化算法把这些数据合成一包后一次发送出去,这样接收方就收到了粘包数据。
(2)接收方引起的粘包是由于接收方用户进程不及时接收数据,从而导致粘包现象。这是因为接收方先把收到的数据放在系统接收缓冲区,用户进程从该缓冲区取数据,若下一包数据到达时前一包数据尚未被用户进程取走,则下一包数据放到系统接收缓冲区时就接到前一包数据之后,而用户进程根据预先设定的缓冲区大小从系统接收缓冲区取数据,这样就一次取到了多包数据。
粘包情况有两种,一种是粘在一起的包都是完整的数据包,另一种情况是粘在一起的包有不完整的包。
不是所有的粘包现象都需要处理,若传输的数据为不带结构的连续流数据(如文件传输),则不必把粘连的包分开(简称分包)。但在实际工程应用中,传输的数据一般为带结构的数据,这时就需要做分包处理。
在处理定长结构数据的粘包问题时,分包算法比较简单;在处理不定长结构数据的粘包问题时,分包算法就比较复杂。特别是粘在一起的包有不完整的包的粘包情况,由于一包数据内容被分在了两个连续的接收包中,处理起来难度较大。实际工程应用中应尽量避免出现粘包现象。
为了避免粘包现象,可采取以下几种措施:
(1)对于发送方引起的粘包现象,用户可通过编程设置来避免,TCP提供了强制数据立即传送的操作指令push,TCP软件收到该操作指令后,就立即将本段数据发送出去,而不必等待发送缓冲区满;
(2)对于接收方引起的粘包,则可通过优化程序设计、精简接收进程工作量、提高接收进程优先级等措施,使其及时接收数据,从而尽量避免出现粘包现象;
(3)由接收方控制,将一包数据按结构字段,人为控制分多次接收,然后合并,通过这种手段来避免粘包。
但是以上提到的三种措施,都有其不足之处:
(1)第一种编程设置方法虽然可以避免发送方引起的粘包,但它关闭了优化算法,降低了网络发送效率,影响应用程序的性能,一般不建议使用。
(2)第二种方法只能减少出现粘包的可能性,但并不能完全避免粘包,当发送频率较高时,或由于网络突发可能使某个时间段数据包到达接收方较快,接收方还是有可能来不及接收,从而导致粘包。
(3)第三种方法虽然避免了粘包,但应用程序的效率较低,对实时应用的场合不适合。
一种比较周全的对策是:接收方创建一预处理线程,对接收到的数据包进行预处理,将粘连的包分开。
具体可以参考:http://blog.csdn.net/soli/article/details/1297109
TCP无保护消息边界的解决
针对这个问题,一般有3种解决方案:
(1)发送固定长度的消息;
(2)把消息的尺寸与消息一块发送;
(3)使用特殊标记来区分消息间隔。
其解决方法具体解决可以参考:http://blog.csdn.net/zhangxinrun/article/details/6721427
网络通讯的封包和拆包
对于基于TCP开发的通讯程序,有个很重要的问题需要解决,就是封包和拆包。
为什么基于TCP的通讯程序需要进行封包和拆包?
TCP是个"流"协议,所谓流,就是没有界限的一串数据,大家可以想想河里的流水,是连成一片的,其间是没有分界线的。但一般通讯程序开发是需要定义一个个相互独立的数据包的,比如用于登陆的数据包,用于注销的数据包。由于TCP"流"的特性以及网络状况,在进行数据传输时会出现以下几种情况。
假设我们连续调用两次send分别发送两段数据data1和data2,在接收端有以下几种接收情况(当然不止这几种情况,这里只列出了有代表性的情况).
A.先接收到data1,然后接收到data2.
B.先接收到data1的部分数据,然后接收到data1余下的部分以及data2的全部.
C.先接收到了data1的全部数据和data2的部分数据,然后接收到了data2的余下的数据.
D.一次性接收到了data1和data2的全部数据.
对于A这种情况正是我们需要的,不再做讨论.对于B,C,D的情况就是大家经常说的"粘包",就需要我们把接收到的数据进行拆包,拆成一个个独立的数据包,为了拆包就必须在发送端进行封包。
为什么会出现B、C、D的情况:
1.由Nagle算法造成的发送端的粘包:Nagle算法是一种改善网络传输效率的算法.简单的说,当我们提交一段数据给TCP发送时,TCP并不立刻发送此段数据,而是等待一小段时间,看看在等待期间是否还有要发送的数据,若有则会一次把这两段数据发送出去。C和D的情况就有可能是Nagle算法造成的。
2.接收端接收不及时造成的接收端粘包:TCP会把接收到的数据存在自己的缓冲区中,然后通知应用层取数据.当应用层由于某些原因不能及时的把TCP的数据取出来,就会造成TCP缓冲区中存放了几段数据。
怎样进行封包和拆包:
封包就是给一段数据加上包头,这样一来数据包就分为包头和包体两部分内容了。包头其实上是个大小固定的结构体,其中有个结构体成员变量表示包体的长度,这是个很重要的变量,其他的结构体成员可根据需要自己定义。根据包头长度固定以及包头中含有包体长度的变量就能正确的拆分出一个完整的数据包。
对于拆包目前最常用的是以下两种方式:
(1)动态缓冲区暂存方式。之所以说缓冲区是动态的是因为当需要缓冲的数据长度超出缓冲区的长度时会增大缓冲区长度。
大概过程描述如下:
A,为每一个连接动态分配一个缓冲区,同时把此缓冲区和SOCKET关联,常用的是通过结构体关联.
B,当接收到数据时首先把此段数据存放在缓冲区中.
C,判断缓存区中的数据长度是否够一个包头的长度,如不够,则不进行拆包操作.
D,根据包头数据解析出里面代表包体长度的变量.
E,判断缓存区中除包头外的数据长度是否够一个包体的长度,如不够,则不进行拆包操作.
F,取出整个数据包.这里的"取"的意思是不光从缓冲区中拷贝出数据包,而且要把此数据包从缓存区中删除掉.删除的办法就是把此包后面的数据移动到缓冲区的起始地址.
这种方法有两个缺点.
① 为每个连接动态分配一个缓冲区增大了内存的使用.
② 有三个地方需要拷贝数据,一个地方是把数据存放在缓冲区,一个地方是把完整的数据包从缓冲区取出来,一个地方是把数据包从缓冲区中删除.第二种拆包的方法会解决和完善这些缺点.
前面提到过这种方法的缺点.下面给出一个改进办法, 即采用环形缓冲.但是这种改进方法还是不能解决第一个缺点以及第一个数据拷贝,只能解决第三个地方的数据拷贝(这个地方是拷贝数据最多的地方).第2种拆包方式会解决这两个问题.
环形缓冲实现方案是定义两个指针,分别指向有效数据的头和尾.在存放数据和删除数据时只是进行头尾指针的移动.
(2)利用底层的缓冲区来进行拆包
由于TCP也维护了一个缓冲区,所以我们完全可以利用TCP的缓冲区来缓存我们的数据,这样一来就不需要为每一个连接分配一个缓冲区了。另一方面我们知道recv或者wsarecv都有一个参数,用来表示我们要接收多长长度的数据。利用这两个条件我们就可以对第一种方法进行优化。
对于阻塞SOCKET来说,我们可以利用一个循环来接收包头长度的数据,然后解析出代表包体长度的那个变量,再用一个循环来接收包体长度的数据。
编程实现见:http://blog.csdn.net/zhangxinrun/article/details/6721495
一个 TCP 连接,没有开启 keepalive,双方一直没有数据交互,进程崩溃和主机崩溃有什么区别?(TCP异常断开连接)
这个问题有几个关键词:
1、没有开启 keepalive;
2、一直没有数据交互;
3、进程崩溃;
4、主机崩溃。
什么是 TCP keepalive ?
这其实就是TCP的保活机制,具体工作原理如下:
如果两端的 TCP 连接一直没有数据交互,达到了触发 TCP 保活机制的条件,那么内核里的 TCP 协议栈就会发送探测报文。
如果对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
如果对端主机崩溃,或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡。
所以,TCP 保活机制可以在双方没有数据交互的情况,通过探测报文,来确定对方的 TCP 连接是否存活。
注意,应用程序若想使用 TCP 保活机制需要通过 socket 接口设置SO_KEEPALIVE选项才能够生效,如果没有设置,那么就无法使用 TCP 保活机制。
知道了 TCP keepalive 作用,我们再回过头看题目中的「主机崩溃」这种情况。
在没有开启 TCP keepalive,且双方一直没有数据交互的情况下,如果客户端的「主机崩溃」了,会发生什么。
客户端主机崩溃了,服务端是无法感知到的,在加上服务端没有开启 TCP keepalive,又没有数据交互的情况下,服务端的 TCP 连接将会一直处于 ESTABLISHED 连接状态,直到服务端重启进程。所以,我们可以得知一个点,在没有使用 TCP 保活机制且双方不传输数据的情况下,一方的 TCP 连接处在 ESTABLISHED 状态,并不代表另一方的连接还一定正常。
那题目中的「进程崩溃」的情况呢?
即使没有开启 TCP keepalive,且双方也没有数据交互的情况下,如果其中一方的进程发生了崩溃,这个过程操作系统是可以感知的到的,于是就会发送 FIN 报文给对方,然后与对方进行 TCP 四次挥手。
接下来我们看看在「有数据传输」的场景下的一些异常情况:
第一种,客户端主机宕机,又迅速重启,会发生什么?
第二种,客户端主机宕机,一直没有重启,会发生什么?
客户端主机宕机,又迅速重启
在客户端主机宕机后,服务端向客户端发送的报文会得不到任何的响应,在一定时长后,服务端就会触发超时重传机制,重传未得到响应的报文。
服务端重传报文的过程中,客户端主机重启完成后,客户端的内核就会接收重传的报文,然后根据报文的信息传递给对应的进程:
如果客户端主机上没有进程监听该 TCP 报文的目标端口号,那么客户端内核就会**回复 RST 报文,重置该 TCP 连接*;
如果客户端主机上有进程监听该 TCP 报文的目标端口号,由于客户端主机重启后,之前的 TCP 连接的数据结构已经丢失了,客户端内核里协议栈会发现找不到该 TCP 连接的 socket 结构体,于是就会回复 RST 报文,重置该 TCP 连接。
所以,只要有一方重启完成后,收到之前 TCP 连接的报文,都会回复 RST 报文,以断开连接。
客户端主机宕机,一直没有重启
这种情况,服务端超时重传报文的次数达到一定阈值后,内核就会判定出该 TCP 有问题,然后通过 Socket 接口告诉应用程序该 TCP 连接出问题了,一般就是 ETIMEOUT 状态码。
那具体重传几次呢?
在 Linux 系统中,提供一个叫 tcp_retries2 配置项,默认值是 15,如下图:
这个内核参数是控制,在 TCP 连接建立的情况下,超时重传的最大次数。
不过 tcp_retries2 设置了 15 次,并不代表 TCP 超时重传了 15 次才会通知应用程序终止该 TCP 连接,内核还会基于「最大超时时间」来判定。
每一轮的超时时间都是倍数增长的,比如第一次触发超时重传是在 2s 后,第二次则是在 4s 后,第三次则是 8s 后,以此类推。内核会根据 tcp_retries2 设置的值,计算出一个最大超时时间。
在重传报文且一直没有收到对方响应的情况时,先达到「最大重传次数」或者「最大超时时间」这两个的其中一个条件后,就会停止重传。