- 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。完成如下代码:
Definition for binary tree
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
}
}
- 思路:
在二叉树的前序遍历序列中,第一个数字总是树的根结点的值。但在中序遍历序列中,根结点的值在序列的中间,左子树的结点的值位于根结点的值的左边,而右子树的结点的值位于根结点的值的右边。因此我们需要扫描中序遍历序列,才能找到根结点的值。
-
如下图所示,前序遍历序列的第一个数字1就是根结点的值。扫描中序遍历序列,就能确定根结点的值的位置。根据中序遍历特点,在根结点的值1前面的3个数字都是左子树结点的值,位于1后面的数字都是右子树结点的值。
- 同样,在前序遍历的序列中,根结点后面的3个数字就是3个左子树结点的值,再后面的所有数字都是右子树结点的值。这样我们就在前序遍历和中序遍历两个序列中,分别找到了左右子树对应的子序列。
- 既然我们已经分别找到了左、右子树的前序遍历序列和中序遍历序列,我们可以用同样的方法分别去构建左右子树。也就是说,接下来的事情可以用递归的方法去完成。
- 代码:
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode root=reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
//前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}
private TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {
if(startPre>endPre||startIn>endIn)
return null;
TreeNode root=new TreeNode(pre[startPre]);
for(int i=startIn;i<=endIn;i++)
if(in[i]==pre[startPre]){
root.left=reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
root.right=reConstructBinaryTree(pre,i-startIn+startPre+1,endPre,in,i+1,endIn);
}
return root;
}
}