(2.7)James Stewart Calculus 5th Edition:Tangents, Velocities, and Other Rates of Change


Tangents, Velocities, and Other Rates of Change 正切,速度和其他速率变化

我们计算2个点的斜率, 是通过 k 值确定的

左图是对应的计算图像
简单的计算过程,可以见下图
右侧表示,Q点越接近P, 越能表示出P点的瞬时速度
(前几章将瞬时速度的时候,有提到)

定理1: tangent line 切线,以及 斜率的定义

简单例子:(因为个人感觉,这个比较重要,贴一个例子)

我们只需要求这个点P(1,1)和 趋于这个点P的x值, 按公式求,即可

这个时候,求得斜率以后, 再带到原公式中,就可以得到这条线的 方程式
(比较简单,就暂时略了)

定理2

其实,就是上面一个写法的变形, 把 x 写成了 a + h
(这里h ,就有 Δ的影子了)



Velocities 速度

这里 平均速度 为:

简单图示:

对应的速度, 和上面写的 斜率,其实公式是类似的


Other Rates of Change 其他变化率

这里虽然只是换了一下写法, 感觉提到 Δ,就正式在讲变化了

所以,上面的写法,可以换成:

对应的图像为:

整个定理4说明:

定理4
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容