基于TensorFlow实现Skip-Gram模型

理解 Word2Vec 之 Skip-Gram 模型

Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。Word2Vec其实是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间中去。

从直观角度上来理解一下,cat这个单词和kitten属于语义上很相近的词,而dog和kitten则不是那么相近,iphone这个单词和kitten的语义就差的更远了。通过对词汇表中单词进行这种数值表示方式的学习(也就是将单词转换为词向量),能够让我们基于这样的数值进行向量化的操作从而得到一些有趣的结论。比如说,如果我们对词向量kitten、cat以及dog执行这样的操作:kitten - cat + dog,那么最终得到的嵌入向量(embeddedvector)将与puppy这个词向量十分相近。

具体内容请看知乎专栏:

https://zhuanlan.zhihu.com/p/27234078

和 基于TensorFlow实现Skip-Gram模型

原文英文文档请参考链接:

- Word2Vec Tutorial- The Skip-Gram Model

跳转中...

- Word2Vec (Part 1):NLP With Deep Learning with Tensorflow (Skip-gram)

http://link.zhihu.com/?target=http%3A//www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/

这是我按照作者的介绍,复制他的代码,进行了程序的运行,记录在我的博客上面,进行更加深入的学习。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 转载自:玛卡瑞纳_a63b这篇文章主要是对介绍Word2Vec中的Skip-Gram模型的两篇英文文档的翻译、理解...
    guisir_zgm阅读 2,262评论 0 2
  • 什么是Word2Vec和Embeddings? Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种...
    lwyaoshen阅读 1,076评论 2 0
  • 前面的文章主要从理论的角度介绍了自然语言人机对话系统所可能涉及到的多个领域的经典模型和基础知识。这篇文章,甚至之后...
    我偏笑_NSNirvana阅读 14,138评论 2 64
  • Word2vec简介 Word2Vec是由Google的Mikolov等人提出的一个词向量计算模型。 输入:大量已...
    lyy0905阅读 12,139评论 3 21
  • 自从开始中午快走以来,每天都要在两点赶回办公室午休,总感觉走得不尽兴。今天突然决定所幸放弃午休,走个过瘾。 因为不...
    梁多多呀阅读 721评论 2 5