package java.lang;
import java.lang.ref.*;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;
/**
* 该类提供线程局部变量.
* 这种变量在多线程环境下访问(通过get或set方法访问)时能保证各个线程里的变量相对独立于其他线程内的变量。
* 该实例通常是在类中定义为 private static fields,用于关联线程和线程的上下文。(例如:a user ID or Transaction ID).
* 例如: 下面的类生成每个线程本地的唯一标识符。
* 线程的id在第一次调用时被分配 {@code ThreadId.get()},并在随后的调用中保持不变 .
* <pre>
* import java.util.concurrent.atomic.AtomicInteger;
*
* public class ThreadId {
* // 包含要分配的下一个线程id的原子整数
* private static final AtomicInteger nextId = new AtomicInteger(0);
*
* // 包含每个线程id的线程局部变量
* private static final ThreadLocal<Integer> threadId =
* new ThreadLocal<Integer>() {
@Override
protected Integer initialValue() {
* return nextId.getAndIncrement();
* }
* };
*
* // 返回当前线程的唯一ID
* public static int get() {
* return threadId.get();
* }
* }
* </pre>
* 只要线程{@code ThreadLocal}是活动的且实例是可访问的,则每个线程都保持对线程本地变量的副本的隐式引用。
* 一个线程结束后,所有线程本地实例的副本都受垃圾回收的影响。(除非存在对这些副本的其他引用)
*/
public class ThreadLocal<T> {
/**
* ThreadLocals rely on per-thread linear-probe hash maps attached
to each thread (Thread.threadLocals and
* inheritableThreadLocals).
* ThreadLocal 对象充当键,通过threadLocalHashCode搜索。(将会用于在ThreadLocalMap中找到ThreadLocal对应的value值)
* 这是一种自定义的 hash code(仅仅在ThreadLocalMaps中使用),
* 为了排除在相同线程下连续使用构造器实例化ThreadLocals出现的hashcode碰撞冲突,在较少情况下也能保持良好的表现
*/
private final int threadLocalHashCode = nextHashCode();
/**
* 下个hasCode,从0开始,原子级更新
*/
private static AtomicInteger nextHashCode =
new AtomicInteger();
/**
* 在一个 AtomicInteger 变量(初始值为0)的基础上每次累加 0x61c88647,使用 AtomicInteger 为了保证每次的加法是原子操作。
* 而 0x61c88647 这个就比较神奇了,它可以使 hashcode 均匀的分布在大小为 2 的 N 次方的数组里。
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* 返回下一个hash code.
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
/**
*
* 当线程第一次访问变量时 {@link #get},将调用此方法,
* 除非线程先前调用了该方法{@link #set},在这种情况下,将不会为线程调用该方法。
*
* 通常,每个线程最多调用一次此方法,但在后续调用了{@link #remove} 的情况下,可以再次调用该方法{@link #get}。
*
* <p>
* 此实现只是返回{@code null};
* 如果程序员希望线程局部变量有一个初始值而不是{@code null},{@code ThreadLocal}必须被子类化 ,然后重写此方法.
* 通常,会使用匿名内部类。
*/
protected T initialValue() {
return null;
}
/**
* 创建 ThreadLocal 局部变量。
* 变量的初始值是通过调用{@code get}上的{@code Supplier}方法来确定的。
*
* @param <S> thread local 类型
* @param supplier 用于确定初始值的 supplier
* @return 一个新的 thread local
* @throws NullPointerException 如果 supplier 是null
* @since 1.8
*/
public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
return new SuppliedThreadLocal<>(supplier);
}
/**
* 默认构造器
*/
public ThreadLocal() {
}
/**
* 返回当前ThreadLocal变量中的 thread 副本。
* 如果对于当前 thread,ThreadLocalMap没有值,那么将调用{@link #initialValue} 方法初始化值
*
* @return thread-local中当前thread的值
*/
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
/**
* 创建 初始值的方法 set()。
* 如果 开发者 重写set(),将使用此set()
*
* @return 初始值
*/
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
/**
* 大多数子类并不需要重写此方法,只依赖于{@link #initialValue}方法设置 thread-locals 的值
*
* @param value 值将会被存储在当前ThreadLocal中
*/
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
/**
* 清除 ThreadLocalMap 中当前thread的值。
* 如果此 thread-local 被当前 thread 读取{@linkplain #get read},且这期间当前线程没有设置其值,则调用其{@link #initialValue}方法重新初始化其值。
* 这将导致在当前线程中多次调用 {@link #initialValue}方法
* If this thread-local variable is subsequently
*
* @since 1.5
*/
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}
/**
* 通过ThreadLocal获取关联的map。
* 在InheritableThreadLocal中重写。
*
* @param t 当前线程
* @return ThreadLocalMap
*/
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
/**
* 根据currentThread 和 fistValue 创建 当前线程的 ThreadLocalMap
*
* @param t 当前线程
* @param firstValue map中的第一个entry
*/
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
/**
* 通过 parentMap 创建对应的 ThreadLocalMap
* 设计为 只被 Thread 构造器。
*
* @param parentMap 与parent thread关联的ThreadLocalMap
* @return 与包含parentMap的map
*/
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
return new ThreadLocalMap(parentMap);
}
/**
* childValue() 显然是定义在 可继承ThradLocal 的子类中,
* 但这里是内部定义的,目的是提供 createInheritedMap 工厂方法,而不需要在InheritableThreadLocal的子类中映射类。
*
* 这种技巧比在方法中嵌入测试实例更好。
*/
T childValue(T parentValue) {
throw new UnsupportedOperationException();
}
/**
* ThreadLocal的扩展,从具体的 {@code Supplier} 获得初始值
*/
static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
private final Supplier<? extends T> supplier;
SuppliedThreadLocal(Supplier<? extends T> supplier) {
this.supplier = Objects.requireNonNull(supplier);
}
@Override
protected T initialValue() {
return supplier.get();
}
}
/**
ThreadLocalMap是一个定制的 hash map,只适合于维护 thread local。
在ThreadLocal类之外不导出任何操作。
这个类是 package private,允许声明类 Thread 中的 fields。
为了帮助处理非常大的和long-lived usages,哈希表条目使用WeakReferences作为键。
To help deal with
* very large and long-lived usages, the hash table entries use
* WeakReferences for keys. However, since reference queues are not
* used, stale entries are guaranteed to be removed only when
* the table starts running out of space.
*/
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object).
在当前 ThreadLocalMap 中
如果 key
Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** 与ThreadLocal关联的值 */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
/**
* 初始容量-- MUST be a power of two.
*/
private static final int INITIAL_CAPACITY = 16;
/**
* table,如果需要调整大小,通常会是原来的2倍
*/
private Entry[] table;
/**
* table中 entryies 的数量
*/
private int size = 0;
/**
* 要调整的下一个 size value。
*/
private int threshold; // 默认为 0
/**
* 最坏情况下 设置容量的调整阈值为 2/3 负载因子,不再以倍数增长
*/
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
/**
* 轮询下一个
*/
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
/**
* 轮询上一个
*/
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
/**
* 构造器,包含(firstKey, firstValue)。
* ThreadLocalMaps 是延迟初始化的,只有在 最少一个 entry 放入其才会初始化
*/
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
/**
* 从已给的 parentMap 构造新的 map 包含所有可继承的 ThreadLocals
* 私有,只被 createInheritedMap() 调用。
*
* @param parentMap 与 parent thread 关联的map.
*/
private ThreadLocalMap(ThreadLocalMap parentMap) {
Entry[] parentTable = parentMap.table;
int len = parentTable.length;
setThreshold(len);
table = new Entry[len];
for (int j = 0; j < len; j++) {
Entry e = parentTable[j];
if (e != null) {
@SuppressWarnings("unchecked")
ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
if (key != null) {
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
/**
* 获取与key关联的entry。
* 此方法为了快速命中 目录中的 entry
* 如果为null,则使用 getEntryAfterMiss()方法,这样设计为了最大限度提高 命中率,更加快速、便捷
*
* @param key thread local变量
* @return 与 传值key关联的 entry,如果没有则返回null
*/
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
/**
* 当 key 没有在此目录中找到,将会使用此方法
*
* @param key threadLocal 对象
* @param i key的hash code 的表索引
* @param e entry[] 位置i的元素
* @return 与key关联的entry,如果没有则为Null
*/
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal<?> k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
/**
* 设置与 key 关联的值
* @param key ThreadLocal 对象
* @param value ThreadLocal 存储的值
*/
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
//如果找到了,直接设置 value 值即可
if (k == key) {
e.value = value;
return;
}
//可以认定 k 已经没有引用了。
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
/**
* 根据key删除 table 中的元素
*/
private void remove(ThreadLocal<?> key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);
return;
}
}
}
/**
* 替换一个过期的 entry,在对特定key操作期间。
* 无论指定的key中是否已存在 entry,值将被存储到entry中。
* As a side effect, this method expunges all stale entries in the
* "run" containing the stale entry. (A run is a sequence of entries
* between two null slots.)
*
* @param key the key
* @param value 关联key的值
* @param staleSlot index of the first stale entry encountered while
* searching for key.
*/
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// 如果找到key,那么需要用过期的 entry 交换它,以保证 hash table 的顺序
//
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// 如果存在,开始清除之前过期的 entry
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// 如果key不存在,则 向过期的 slot中放入新的entry
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// 如果运行时有其他过期的entries,则删除
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
/**
删除过期的 entry,
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges any other stale entries encountered before the trailing null.
这也会删除
见 Knuth,Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// 删除在 table 中 staleSlot 位置的元素
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;// 计数减少1
// rehash 直到遇到下一个null的值
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// 如果为 null 说明当前 e 对应的 ThreadLocal 已经没有引用
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
//与Knuth6.4算法R不同,我们必须扫描到NULL,因为多个entries可能已经过时。
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
/**
* Heuristically scan some cells looking for stale entries.
扫描一些单元格寻找过期的entries。
这将在添加新元素或删除一个过期的元素时调用。
It performs a logarithmic number of scans, as a balance between no
scanning (fast but retains garbage) and a number of scans
proportional to number of elements, that would find all
garbage but would cause some insertions to take O(n) time.
*
* @param i 非过期entry的位置。从i开始扫描元素。
*
* @param n scan control: {@code log2(n)} cells are scanned,
* unless a stale entry is found, in which case
* {@code log2(table.length)-1} additional cells are scanned.
* When called from insertions, this parameter is the number
* of elements, but when from replaceStaleEntry, it is the
* table length. (Note: all this could be changed to be either
* more or less aggressive by weighting n instead of just
* using straight log n. 但是此版本简单、快速并运行良好。)
*
* @return 如果已删除过期的entry,则返回true
*/
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
// 下个位置
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
// 数组的长度
n = len;
removed = true;
// 清除在i位置过期entry项
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
/**
* 调整table的容量:
* 1:首先扫描并清除过期entries;
* 2:清除后容量还不够,则进行2倍方式扩容。
*/
private void rehash() {
// 清除所有在table中过期的entry
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();
}
/**
* table 的容量翻倍
*/
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
// 容量扩增为原来的2倍
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
// 如果 此元素 不为空
if (e != null) {
ThreadLocal<?> k = e.get();
if (k == null) {
// thread-local 清除此元素
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}
/**
* 清除所有在table中过期的entry
*/
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
}
}
ThreadLocal源码分析
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 1. ThreadLocal的作用 ThreadLocal的作用是提供线程内的局部变量,说白了,就是在各线程内部...
- ThreadLocal可能引起的内存泄露 threadlocal里面使用了一个存在弱引用的map,当释放掉thre...
- 概述 ThreadLocal是一种线程内部存储类。通过他存储的数据在不同的线程操作而互不干扰,类似于各个线程中都有...
- 1、ThreadLocal线程的局部变量。既然是线程局部变量,那么理所当然就应该存储在自己的线程对象中,我们可...