Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
**Note: **You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example:
Input: [1,8,6,2,5,4,8,3,7]
Output: 49
题目
一个数组,画在坐标系里,索引为横轴,值为纵轴。求两个值,使以这两个值的柱子与横轴组成的容器能乘最多的水。
什么意思呢?
就是求两个数,使得(索引差×两个数的最小值)最大,返回这个最大值。
思路
假设这个区间就是数组收尾组合而成的,[0,n-1],此时我们需要考虑中间有没有容积更大的组合,方法就是移动短的那个边,看看有没有比他长的边存在,因为往里移动x轴的边减小了,要想容积变大,必须竖着的边要更长才行。左边移动完,移动右边,都遍历完,取容积最大值就可以了
代码
int res=0;
int left=0;
int right=height.length-1;
while (left<right) {
//最大值为:
res = Math.max(res, Math.min(height[left], height[right]) * (right - left));
//如果左边低,则从左往右找一条高于left的边,这样有可能容积更大。
if (height[left]<height[right]) {
int tmp=left;
while (tmp<right&&height[tmp]<=height[left]) {
tmp++;
}
//while循环停止时就是找到了这个边,循环算一下
left=tmp;
}else {
int tmp=right;
while (tmp>left&&height[tmp]<=height[right]) {
tmp--;
}
//while循环停止时就是找到了这个边,循环算一下
right=tmp;
}
}
return res;