基于springboot的爱琴海购物公园系统的设计实现(附源码+lw+ppt)

购物公园系统-系统介绍

爱琴海购物公园网上商城系统是一套基于SpringBoot+Vue技术架构开发的现代化B/S电商平台,专门为大型购物中心和商业综合体提供线上线下一体化的购物服务解决方案。系统采用前后端分离的设计模式,后端通过SpringBoot框架构建RESTful API接口,结合MyBatis实现数据持久化操作,前端使用Vue.js框架配合ElementUI组件库打造用户友好的购物界面。核心业务模块涵盖商品信息展示与管理、在线购物车与订单处理、会员管理与优惠券发放、客服咨询服务、数据统计分析等完整的电商功能体系。系统支持多商户入驻管理,商品分类展示,库存实时跟踪,订单状态流转,支付接口集成,用户评价反馈等实用功能。通过MySQL数据库存储商品信息、用户数据、订单记录等核心业务数据,确保数据安全性和一致性。平台还集成了数据可视化模块,能够实时展示销售统计、用户行为分析、商品热度排行等关键业务指标,为商城运营决策提供数据支撑,整体系统具有良好的扩展性和维护性。

购物公园系统-选题背景

随着数字化转型浪潮的推进,传统实体商业面临着前所未有的挑战和机遇。大型购物中心和商业综合体作为城市商业的重要载体,急需通过线上平台来拓展业务边界,提升客户黏性和竞争优势。当前消费者的购物习惯正在发生深刻变化,线上浏览、比价、下单已成为日常消费的重要环节,而传统的实体商场往往缺乏有效的数字化工具来连接线上线下的消费场景。市面上虽然存在一些通用的电商解决方案,但大多针对单一商户设计,难以满足大型购物中心多商户、多品类、复杂业务流程的管理需求。爱琴海购物公园作为知名的商业品牌,其线上商城系统需要兼顾品牌形象展示、商户统一管理、用户体验优化等多重要求。在这样的市场背景下,开发一套专门适配大型购物中心业务模式的网上商城系统显得十分必要。

本课题的研究对于理解现代电商系统的架构设计和业务实现具有一定的学习价值。通过完整地设计和开发爱琴海购物公园网上商城,可以深入掌握SpringBoot框架在复杂业务场景中的应用方法,熟悉前后端分离开发模式,锻炼系统分析和设计能力。从实际应用角度来看,系统能够为大型购物中心提供基础的线上服务功能,帮助商户实现数字化转型,为消费者提供更加便捷的购物体验。虽然这只是一个学习性质的毕业设计项目,但通过模拟真实的商业场景,可以让我们更好地理解电商平台的核心业务逻辑,包括商品管理、订单流程、用户体验设计等关键环节。系统中的数据可视化功能能够帮助我们学习如何将枯燥的数据转化为直观的图表展示,这对于培养数据分析思维很有帮助。项目开发过程中遇到的技术难题和解决方案,也为今后从事相关领域的工作积累了宝贵的实践经验,提升了我们解决实际问题的能力。

购物公园系统-技术选型

开发语言:Java+Python(两个版本都支持)
后端框架:Spring Boot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持)
前端:Vue+ElementUI+HTML
数据库:MySQL
系统架构:B/S
开发工具:IDEA(Java的)或者PyCharm(Python的)

购物公园系统-图片展示

![文档.png](https://upload-images.jianshu.io/upload_images/29973749-3ab132ee1d9411a8.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
查看商品信息.png
订单管理.png
购买商品.png
客服中心.png
领取优惠券.png
商品信息管理.png
数据可视化.png

购物公园系统-视频展示

购物公园系统-视频展示

购物公园系统-代码展示

购物公园系统-代码
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.springframework.stereotype.Service;
import org.springframework.beans.factory.annotation.Autowired;
import java.time.LocalDateTime;
import java.util.List;
import java.math.BigDecimal;

@Service
public class ShoppingMallService {
    @Autowired
    private ProductMapper productMapper;
    @Autowired
    private OrderMapper orderMapper;
    @Autowired
    private CouponMapper couponMapper;
    
    public Result manageProductInfo(Product product, String operation) {
        SparkSession spark = SparkSession.builder().appName("ProductAnalytics").master("local[*]").getOrCreate();
        if (product == null || product.getProductName() == null || product.getProductName().trim().isEmpty()) {
            return Result.error("商品名称不能为空");
        }
        if (product.getPrice() == null || product.getPrice().compareTo(BigDecimal.ZERO) <= 0) {
            return Result.error("商品价格必须大于0");
        }
        if (product.getStock() == null || product.getStock() < 0) {
            return Result.error("商品库存不能为负数");
        }
        if (product.getCategoryId() == null) {
            return Result.error("商品分类不能为空");
        }
        product.setUpdateTime(LocalDateTime.now());
        product.setStatus(1);
        try {
            int result = 0;
            if ("add".equals(operation)) {
                product.setCreateTime(LocalDateTime.now());
                result = productMapper.insertProduct(product);
            } else if ("update".equals(operation)) {
                result = productMapper.updateProduct(product);
            }
            if (result > 0) {
                Dataset<Row> productData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/shopping_mall").option("dbtable", "products").option("user", "root").option("password", "123456").load();
                productData.createOrReplaceTempView("products");
                Dataset<Row> categoryStats = spark.sql("SELECT category_id, COUNT(*) as product_count, AVG(price) as avg_price, SUM(stock) as total_stock FROM products WHERE status = 1 GROUP BY category_id ORDER BY product_count DESC");
                categoryStats.show();
                Dataset<Row> priceRange = spark.sql("SELECT CASE WHEN price < 100 THEN '低价位' WHEN price BETWEEN 100 AND 500 THEN '中价位' ELSE '高价位' END as price_range, COUNT(*) as count FROM products GROUP BY CASE WHEN price < 100 THEN '低价位' WHEN price BETWEEN 100 AND 500 THEN '中价位' ELSE '高价位' END");
                priceRange.show();
                return Result.success("商品操作成功", product);
            } else {
                return Result.error("商品操作失败");
            }
        } catch (Exception e) {
            return Result.error("系统异常:" + e.getMessage());
        } finally {
            spark.stop();
        }
    }
    
    public Result processOrder(ShoppingOrder order) {
        SparkSession spark = SparkSession.builder().appName("OrderProcessing").master("local[*]").getOrCreate();
        if (order.getUserId() == null) {
            return Result.error("用户ID不能为空");
        }
        if (order.getOrderItems() == null || order.getOrderItems().isEmpty()) {
            return Result.error("订单商品不能为空");
        }
        if (order.getShippingAddress() == null || order.getShippingAddress().trim().isEmpty()) {
            return Result.error("收货地址不能为空");
        }
        BigDecimal totalAmount = BigDecimal.ZERO;
        for (OrderItem item : order.getOrderItems()) {
            if (item.getProductId() == null || item.getQuantity() == null || item.getQuantity() <= 0) {
                return Result.error("商品信息不完整");
            }
            Product product = productMapper.getProductById(item.getProductId());
            if (product == null || product.getStatus() != 1) {
                return Result.error("商品不存在或已下架");
            }
            if (product.getStock() < item.getQuantity()) {
                return Result.error("商品库存不足:" + product.getProductName());
            }
            BigDecimal itemTotal = product.getPrice().multiply(new BigDecimal(item.getQuantity()));
            item.setPrice(product.getPrice());
            item.setSubtotal(itemTotal);
            totalAmount = totalAmount.add(itemTotal);
        }
        if (order.getCouponId() != null) {
            Coupon coupon = couponMapper.getCouponById(order.getCouponId());
            if (coupon != null && coupon.getMinAmount().compareTo(totalAmount) <= 0) {
                totalAmount = totalAmount.subtract(coupon.getDiscount());
                order.setCouponDiscount(coupon.getDiscount());
            }
        }
        order.setTotalAmount(totalAmount);
        order.setOrderStatus("PENDING");
        order.setCreateTime(LocalDateTime.now());
        order.setOrderNumber("AQH" + System.currentTimeMillis());
        try {
            int orderResult = orderMapper.insertOrder(order);
            for (OrderItem item : order.getOrderItems()) {
                item.setOrderId(order.getId());
                orderMapper.insertOrderItem(item);
                productMapper.updateStock(item.getProductId(), item.getQuantity());
            }
            if (orderResult > 0) {
                Dataset<Row> orderData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/shopping_mall").option("dbtable", "orders").option("user", "root").option("password", "123456").load();
                orderData.createOrReplaceTempView("orders");
                Dataset<Row> dailyOrders = spark.sql("SELECT DATE(create_time) as order_date, COUNT(*) as daily_count, SUM(total_amount) as daily_revenue FROM orders WHERE order_status != 'CANCELLED' GROUP BY DATE(create_time) ORDER BY order_date DESC LIMIT 7");
                dailyOrders.show();
                return Result.success("订单创建成功", order);
            } else {
                return Result.error("订单创建失败");
            }
        } catch (Exception e) {
            return Result.error("处理订单异常:" + e.getMessage());
        } finally {
            spark.stop();
        }
    }
    
    public Result generateDataVisualization(String reportType, String dateRange) {
        SparkSession spark = SparkSession.builder().appName("DataVisualization").master("local[*]").getOrCreate();
        if (reportType == null || reportType.trim().isEmpty()) {
            return Result.error("报表类型不能为空");
        }
        if (dateRange == null || dateRange.trim().isEmpty()) {
            dateRange = "30";
        }
        try {
            Dataset<Row> orderData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/shopping_mall").option("dbtable", "orders").option("user", "root").option("password", "123456").load();
            Dataset<Row> productData = spark.read().format("jdbc").option("url", "jdbc:mysql://localhost:3306/shopping_mall").option("dbtable", "products").option("user", "root").option("password", "123456").load();
            orderData.createOrReplaceTempView("orders");
            productData.createOrReplaceTempView("products");
            DataVisualization visualization = new DataVisualization();
            if ("sales".equals(reportType)) {
                Dataset<Row> salesData = spark.sql("SELECT DATE(create_time) as sale_date, COUNT(*) as order_count, SUM(total_amount) as total_sales FROM orders WHERE create_time >= DATE_SUB(NOW(), INTERVAL " + dateRange + " DAY) AND order_status IN ('COMPLETED', 'SHIPPED') GROUP BY DATE(create_time) ORDER BY sale_date");
                List<Row> salesList = salesData.collectAsList();
                visualization.setSalesData(salesList);
                visualization.setChartType("line");
                visualization.setTitle("销售趋势分析");
            } else if ("product".equals(reportType)) {
                Dataset<Row> productStats = spark.sql("SELECT p.product_name, p.category_id, COUNT(oi.product_id) as sold_count, SUM(oi.subtotal) as total_revenue FROM products p JOIN order_items oi ON p.id = oi.product_id JOIN orders o ON oi.order_id = o.id WHERE o.create_time >= DATE_SUB(NOW(), INTERVAL " + dateRange + " DAY) GROUP BY p.id, p.product_name, p.category_id ORDER BY sold_count DESC LIMIT 10");
                List<Row> productList = productStats.collectAsList();
                visualization.setProductData(productList);
                visualization.setChartType("bar");
                visualization.setTitle("热销商品排行");
            } else if ("category".equals(reportType)) {
                Dataset<Row> categoryStats = spark.sql("SELECT p.category_id, COUNT(DISTINCT p.id) as product_count, COUNT(oi.product_id) as sold_count, SUM(oi.subtotal) as category_revenue FROM products p LEFT JOIN order_items oi ON p.id = oi.product_id LEFT JOIN orders o ON oi.order_id = o.id WHERE o.create_time >= DATE_SUB(NOW(), INTERVAL " + dateRange + " DAY) OR o.create_time IS NULL GROUP BY p.category_id ORDER BY category_revenue DESC");
                List<Row> categoryList = categoryStats.collectAsList();
                visualization.setCategoryData(categoryList);
                visualization.setChartType("pie");
                visualization.setTitle("分类销售分布");
            }
            Dataset<Row> summary = spark.sql("SELECT COUNT(DISTINCT user_id) as total_users, COUNT(*) as total_orders, SUM(total_amount) as total_revenue, AVG(total_amount) as avg_order_value FROM orders WHERE create_time >= DATE_SUB(NOW(), INTERVAL " + dateRange + " DAY)");
            if (!summary.isEmpty()) {
                Row summaryRow = summary.first();
                visualization.setTotalUsers(summaryRow.getAs("total_users"));
                visualization.setTotalOrders(summaryRow.getAs("total_orders"));
                visualization.setTotalRevenue(new BigDecimal(summaryRow.getAs("total_revenue").toString()));
                visualization.setAvgOrderValue(new BigDecimal(summaryRow.getAs("avg_order_value").toString()));
            }
            visualization.setGenerateTime(LocalDateTime.now());
            visualization.setDateRange(dateRange + "天");
            return Result.success("数据可视化生成成功", visualization);
        } catch (Exception e) {
            return Result.error("数据分析异常:" + e.getMessage());
        } finally {
            spark.stop();
        }
    }
}

购物公园系统-文档展示

文档.png

获取源码-结语

相信大家通过这篇分享对爱琴海购物公园网上商城系统有了全面的了解。这个项目不仅涵盖了SpringBoot、Vue等主流技术栈,还融入了大数据分析和可视化功能,既能体现我们的编程实力,又能展示数据处理能力。系统功能丰富实用,技术含量适中,非常适合作为毕业设计的选题。如果你正在为毕设选题而纠结,或者对电商系统开发感兴趣,欢迎在评论区和我交流讨论。觉得内容有帮助的话记得点个赞支持一下!想要完整的项目源码、数据库设计文档或者开发指导的小伙伴,可以私信联系我,我会尽力帮助大家顺利完成毕业设计。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容