原文链接:如何自己实现一个Swift数组
本文中,我们将会探索Swift原生Array数组的实现方式,并且自定义实现一个数组类型,能够字面量来创建数组,通过下标来获取元素。
查看文档我们发现,Swift的数组是一个结构体类型,它遵守了CollectionType
、MutableCollectionType
、_DstructorSafeContainer
协议,其中最重要的就是CollectionType
协议,数组的一些主要功能都是通过这个协议实现的。
而CollectionType
协议又遵守Indexable
和SequenceType
这两个协议。而在这两个协议中,SequenceType
协议是数组、字典等集合类型最重要的协议,在文档中解释了SequenceType
是一个可以通过for
...in
循环迭代的类型,实现了这个协议,就可以for
...in
循环了。
A type that can be iterated with a
for
...in
loop.
而SequenceType
是建立在GeneratorType
基础上的,sequence需要GeneratorType
来告诉它如何生成元素。
GeneratorType
GeneratorType
协议有两部分组成:
- 它需要有一个
Element
关联类型,这也是它产生的值的类型。 - 它需要有一个
next
方法。这个方法返回Element
的可选对象。通过这个方法就可以一直获取下一个元素,直到返回nil,就意味着已经获取到了所有元素。
/// Encapsulates iteration state and interface for iteration over a
/// sequence.
///
/// - Note: While it is safe to copy a generator, advancing one
/// copy may invalidate the others.
///
/// Any code that uses multiple generators (or `for`...`in` loops)
/// over a single sequence should have static knowledge that the
/// specific sequence is multi-pass, either because its concrete
/// type is known or because it is constrained to `CollectionType`.
/// Also, the generators must be obtained by distinct calls to the
/// sequence's `generate()` method, rather than by copying.
public protocol GeneratorType {
/// The type of element generated by `self`.
associatedtype Element
/// Advance to the next element and return it, or `nil` if no next
/// element exists.
///
/// - Requires: `next()` has not been applied to a copy of `self`
/// since the copy was made, and no preceding call to `self.next()`
/// has returned `nil`. Specific implementations of this protocol
/// are encouraged to respond to violations of this requirement by
/// calling `preconditionFailure("...")`.
@warn_unused_result
public mutating func next() -> Self.Element?
}
我把自己实现的数组命名为MYArray
,generator为MYArrayGenerator
,为了简单,这里通过字典来存储数据,并约定字典的key为从0开始的连续数字。就可以这样来实现GeneratorType
:
/// 需保准dic的key是从0开始的连续数字
struct MYArrayGenerator<T>: GeneratorType {
private let dic: [Int: T]
private var index = 0
init(dic: [Int: T]) {
self.dic = dic
}
mutating func next() -> T? {
let element = dic[index]
index += 1
return element
}
}
这里通过next
方法的返回值,隐式地为Element赋值。显式地赋值可以这样写typealias Element = T
。要使用这个生成器就非常简单了:
let dic = [0: "XiaoHong", 1: "XiaoMing"]
var generator = MYArrayGenerator(dic: dic)
while let elment = generator.next() {
print(elment)
}
// 打印的结果:
// XiaoHong
// XiaoMing
SequenceType
有了generator,接下来就可以实现SequenceType
协议了。SequenceType
协议也是主要有两部分:
- 需要有一个Generator关联类型,它要遵守
GeneratorType
。 - 要实现一个
generate
方法,返回一个Generator。
同样的,我们可以通过制定generate
方法的方法类型来隐式地设置Generator:
struct MYArray<T>: SequenceType {
private let dic: [Int: T]
func generate() -> MYArrayGenerator<T> {
return MYArrayGenerator(dic: dic)
}
}
这样我们就可以创建一个MYArray
实例,并通过for循环来迭代:
let dic = [0: "XiaoHong", 1: "XiaoMing", 2: "XiaoWang", 3: "XiaoHuang", 4: "XiaoLi"]
let array = MYArray(dic: dic)
for value in array {
print(value)
}
let names = array.map { $0 }
当然,目前这个实现还存在很大的隐患,因为传入的字典的key是不可知的,虽然我们限定了必须是Int类型,但无法保证它一定是从0开始,并且是连续,因此我们可以通过修改初始化方法来改进:
init(elements: T...) {
dic = [Int: T]()
elements.forEach { dic[dic.count] = $0 }
}
然后我们就可以通过传入多参数来创建实例了:
let array = MYArray(elements: "XiaoHong", "XiaoMing", "XiaoWang", "XiaoHuang", "XiaoLi")
再进一步,通过实现ArrayLiteralConvertible
协议,我们可以像系统的Array数组一样,通过字面量来创建实例:
let array = ["XiaoHong", "XiaoMing", "XiaoWang", "XiaoHuang", "XiaoLi"]
最后还有一个数组的重要特性,就是通过下标来取值,这个特性我们可以通过实现subscript
方法来实现:
extension MYArray {
subscript(idx: Int) -> Element {
precondition(idx < dic.count, "Index out of bounds")
return dic[idx]!
}
}
print(array[3]) // XiaoHuang
至此,一个自定义的数组就基本实现了,我们可以通过字面量来创建一个数组,可以通过下标来取值,可以通过for循环来遍历数组,可以使用map、forEach等高阶函数。
小结
要实现一个数组的功能,主要是通过实现
SequenceType
协议。SequenceType
协议有一个Generator实现GeneratorType
协议,并通过Generator的next
方法来取值,这样就可以通过连续取值,来实现for循环遍历了。同时通过实现ArrayLiteralConvertible
协议和subscript
,就可以通过字面量来创建数组,并通过下标来取值。
CollectionType
上面我们为了弄清楚SequenceType
的实现原理,通过实现SequenceType
和GeneratorType
来实现数组,但实际上Swift系统的Array类型是通过实现CollectionType
来获得这些特性的,而CollectionType
协议又遵守Indexable
和SequenceType
这两个协议。并扩展了两个关联类型Generator
和SubSequence
,以及9个方法,但这两个关联类型都是默认值,而且9个方法也都在协议扩展中有默认实现。
因此,我们只需要为Indexable
协议中要求的 startIndex
和 endIndex
提供实现,并且实现一个通过下标索引来获取对应索引的元素的方法。只要我们实现了这三个需求,我们就能让一个类型遵守 CollectionType
了。因此这个自定义的数组可以这样实现:
struct MYArray<Element>: CollectionType {
private var dic: [Int: Element]
init(elements: Element...) {
dic = [Int: Element]()
elements.forEach { dic[dic.count] = $0 }
}
var startIndex: Int { return 0 }
var endIndex: Int { return dic.count }
subscript(idx: Int) -> Element {
precondition(idx < endIndex, "Index out of bounds")
return dic[idx]!
}
}
extension MYArray: ArrayLiteralConvertible {
init(arrayLiteral elements: Element...) {
dic = [Int: Element]()
elements.forEach { dic[dic.count] = $0 }
}
}