python-openCV入门(三)--二值化操作

目录

全局阀值
局部阀值

前言

在灰度图像的处理中,经常会用到二值化处理,二值化处理中最常用是就是全局阀值和局部阀值。
我们将对下面这一幅照片进行处理。


TIM图片20190216230535.png

全局阀值

# -*- coding=GBK -*-
import cv2 as cv

image = cv.imread("2.jpg")

#全局阈值

gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)  #把输入图像灰度化
    #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
print("threshold value %s"%ret)
cv.namedWindow("binary0", cv.WINDOW_NORMAL)
cv.imshow("normal", gray)
cv.imshow("binary0", binary)

cv.waitKey(0)
cv.destroyAllWindows()

全局阀值二值化图像


TIM图片20190216230528.png

函数说明

函数说明:

第一个参数表示输入图像,必须为单通道灰度图。

第二个参数表示输出的边缘图像,为单通道黑白图。

第三个参数表示阈值

第四个参数表示最大值。

第五个参数表示运算方法。

在OpenCV的imgproc\types_c.h中可以找到运算方法的定义。

/* Threshold types */

CV_THRESH_BINARY      =0,  /* value = value > threshold ? max_value : 0       */

CV_THRESH_BINARY_INV  =1,  /* value = value > threshold ? 0 : max_value       */

CV_THRESH_TRUNC       =2,  /* value = value > threshold ? threshold : value   */

CV_THRESH_TOZERO      =3,  /* value = value > threshold ? value : 0           */

CV_THRESH_TOZERO_INV  =4,  /* value = value > threshold ? 0 : value           */

CV_THRESH_MASK        =7,

CV_THRESH_OTSU        =8  /* use Otsu algorithm to choose the optimal threshold value; combine the flag with one of the above CV_THRESH_* values */

注释已经写的很清楚了,因此不再用中文来表达了。

局部阀值

import cv2 as cv

image = cv.imread("2.jpg")
#全局阈值

gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)  #把输入图像灰度化
    #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。
binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY, 25, 10)

cv.namedWindow("binary0", cv.WINDOW_NORMAL)
cv.imshow("normal", gray)
cv.imshow("binary0", binary)

cv.waitKey(0)
cv.destroyAllWindows()

局部阀值二值化图像


wed.png

自适应阈值化能够根据图像不同区域亮度分布的,改变阈值,具体调用方法如下:


void cv::adaptiveThreshold(
    cv::InputArray src, // 输入图像
    cv::OutputArray dst, // 输出图像
    double maxValue, // 向上最大值
    int adaptiveMethod, // 自适应方法,平均或高斯
    int thresholdType // 阈值化类型
    int blockSize, // 块大小
    double C // 常量
);

cv::adaptiveThreshold()支持两种自适应方法,即cv::ADAPTIVE_THRESH_MEAN_C(平均)和cv::ADAPTIVE_THRESH_GAUSSIAN_C(高斯)。
在两种情况下,自适应阈值T(x, y)。通过计算每个像素周围bxb大小像素块的加权均值并减去常量C得到。其中,b由blockSize给出,大小必须为奇数;如果使用平均的方法,则所有像素周围的权值相同;如果使用高斯的方法,则(x,y)周围的像素的权值则根据其到中心点的距离通过高斯方程得到。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容