综述:
自从alphaGo在围棋上战胜人类以来,以深度学习为核心的人工智能技术便得到了广泛的发展。其中算法设计与模型训练是深度学习研究的两个主要组成部分。在这里为了方便大家了解与入门深度学习开发,我以最简单的手写数字识别,通过Pytorch框架对LeNet-5网络进行构建与模型训练,,对Pytorch框架的使用与训练的全流程做一个详细的记录说明。
其中LeNet-5是一种用于手写体字符识别的非常高效的卷积神经网络,关于该网络的说明,大家可以通过论文(Gradient-Based Learning Applied to Document Recognition)和相关的技术博客(LeNet-5详解)来了解,这里不做过多赘述。
下面开始正题:
1. 训练框架环境
os: ubuntu 18.04
python version: 3.6+
torch 1.2+
torchvision 0.4+
opencv-python
PIL
numpy
onnx
onnxruntime
2.网络搭建
# 搭建LeNet 网络模型
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=3, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(6, 16, kernel_size=5),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.fc1 = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.BatchNorm1d(84),
nn.ReLU()
)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# print('x shape: ', x.shape) # [N, 1, 28, 28]
x = self.conv1(x) # [N, 6, 14, 14]
x = self.conv2(x) # [N, 16, 5, 5]
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
3.模型训练与导出
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 64
# 下载和准备数据
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor(),
download=True)
# 建立一个数据迭代器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
net = LeNet().to(device)
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 设置训练参数
LR = 0.001
Momentum = 0.9
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=Momentum)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.8)
epochs = 30
epochs_acc = []
for epoch in range(epochs):
print("Epoch = ", epoch+1)
# 训练模型
sum_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = Variable(inputs).cuda() if torch.cuda.is_available() else Variable(inputs).cpu(), \
Variable(labels).cuda() if torch.cuda.is_available() else Variable(labels).cpu()
optimizer.zero_grad()#将梯度归零
outputs = net(inputs)#将数据传入网络进行前向运算
loss = criterion(outputs, labels)#得到损失函数
loss.backward()#反向传播
optimizer.step()#通过梯度做一步参数更新
# print(loss)
sum_loss += loss.item()
if i % 100 == 99:
print('[%d,%d] loss:%.03f' % (epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0
scheduler.step()
# 验证测试集
net.eval()#将模型变换为测试模式
correct = 0
total = 0
for data_test in test_loader:
images, labels = data_test
images, labels = Variable(images).cuda() if torch.cuda.is_available() else Variable(images).cpu(), \
Variable(labels).cuda() if torch.cuda.is_available() else Variable(labels).cpu()
output_test = net(images)
#此处的predicted获取的是最大值的下标
_, predicted = torch.max(output_test, 1)
# print("output_test:" + str(output_test))
total += labels.size(0)
correct += (predicted == labels).sum()
print("correct sum: ", correct)
epochs_acc.append(correct.item() / len(test_dataset))
print("Test acc: {0}".format(correct.item() / len(test_dataset)))#.cpu().numpy()
# 保存训练模型文件
SAVE_PATH = "./Models/30/LeNet_p" + str(epoch+1) + ".pth"
torch.save(net.state_dict(), SAVE_PATH)
max_index, max_number = max(enumerate(epochs_acc), key=operator.itemgetter(1))
print("Max acc epoch: ", max_index+1)
4.模型测试
4.1 pytorch模型测试
def pytorchModelTest(device, input, pytorch_model_path):
# load pytorch model
torch_model = LeNet().to(device)
torch_model.load_state_dict(torch.load(pytorch_model_path, map_location=device))
# set the model to inference mode
torch_model.eval()
# input to the model
test_torch_out = torch_model(input)
print("torch out:", test_torch_out)
return test_torch_out
4.2 手写数字图片实测
4.2.1 测试代码
# read img data
img = Image.open(image_path).convert('L')
test_transform = transforms.Compose([
transforms.Resize(28),
transforms.ToTensor()
])
img2 = test_transform(img)
img2 = torch.unsqueeze(img2, 0)
img2 = img2.cuda().float() if torch.cuda.is_available() else img2.cpu().float()
# pytorch test
test_torch_out = pytorchModelTest(device, img2, input_pytorch_model_path)
_, torch_predicted = torch.max(test_torch_out, 1)
print("pytorch_test_img " + image_path + " out = ", torch_predicted)
4.2.2 实测效果图
输出结果:(输出tensor的序号代表识别到的数字)
torch out: tensor([[ 1.5921, 13.6434, 0.9059, -4.3882, -1.2459, -5.6476, 1.5759, -1.3486,
-2.5218, -4.6718]], device='cuda:0', grad_fn=<AddmmBackward>)
pytorch_test_img ./data/test_hwd_imgs/1.jpg out = tensor([1], device='cuda:0')
输出结果:(输出tensor的序号代表识别到的数字)
torch out: tensor([[-15.0987, -6.8363, -8.6192, 7.4078, 3.9232, -3.8025, -9.5131,
2.4302, 5.4421, 26.3228]], device='cuda:0',
grad_fn=<AddmmBackward>)
pytorch_test_img ./data/test_hwd_imgs/9.jpg out = tensor([9], device='cuda:0')