数据分析师必备技能清单

Ultimate Skill Checklist For Data Analyst

Contents

Programming

  • Python programming language
    • [ ] numpy
    • [ ] pandas
    • [ ] matplotlib
    • [ ] scipy
    • [ ] scikit-learn
  • R programming language
    • [ ] ggplot2
    • [ ] dplyr
    • [ ] ggally
    • [ ] reshape2
  • Optional
    • [ ] ipython
    • [x] ipython notebook
    • [ ] anaconda
    • [ ] ggplot
    • [ ] seaborn
    • [ ] Spreadsheet tools (like Excel)
  • Additional Skills
    • [ ] Javascript and HTML for D3.js
      • [ ] D3.js
      • [ ] AJAX implementation
      • [ ] jQuery
    • [ ] C/C++ or Java

Statistic

  • Descriptive and Inferential statistics
    • [x] Mean, median, mode
    • [ ] Data distributions
      • [ ] Standard normal
      • [ ] Exponential/Poisson
      • [ ] Binomial
      • [ ] Chi-square
    • [ ] Standard deviation and variance
    • [ ] Hypothesis testing
      • [ ] P-values
    • [ ] Test for significance
      • [ ] Z-test, t-test, Mann-Whitney U
      • [ ] Chi-squared and ANOVA testing
  • Experimental design
    • [ ] A/B Testing
    • [ ] Controlling variables and choosing good control and testing groups
    • [ ] Sample Size and Power law
    • [ ] Hypothesis Testing, test hypothesis
    • [ ] Confidence level
    • [ ] SMART experiments: Specific, Measurable, Actionable, Realistic, Timely]

Mathematics

  • [x] Translate numbers and concepts into a mathematical expression: 4 times the square-root of one-third of a gallon of water (expressed as g): 4 √(1/3 g)
  • [x] Solve for missing values in Algebra equations: 14 = 2x + 29
  • [ ] How does the 1/2 value change the shape of this graph?
  • [ ] �Linear algebra and Calculus
  • [ ] Matrix manipulations. Dot product is crucial to understand.
    �- [ ] Eigenvalues and eigenvectors -- Understand the significance of these two concepts
  • [ ] Multivariable derivatives and integration in Calculus

Machine Learning

  • Supervised Learning
    • [ ] Decision trees
    • [ ] Naive Bayes classification
    • [ ] Ordinary Least Squares regression
    • [ ] Logistic regression
    • [ ] Neural networks
    • [ ] Support vector machines
    • [ ] Ensemble methods
  • Unsupervised Learning
    • [ ] Clustering Algorithms
    • [ ] Principal Component Analysis (PCA)
    • [ ] Singular Value Decomposition (SVD)
    • [ ] Independent Component Analysis (ICA)
  • Reinforcement Learning
    • [ ] Qlearning
    • [ ] TD-Learning
    • [ ] Reinforcement Learning

Data Wrangling

  • Python
    • [ ] Learn about Python String library for string manipulations
    • [ ] Parsing common file formats such as csv and xml files
    • [ ] Regular Expressions
    • [x] Mathematical transformations
      • [x] Convert non-normal distribution to normal with log-10 transformation
  • Database systems (SQL-based and NO SQL based) - Databases act as a central hub to store information
  • [ ] Relational databases such as PostgreSQL, mySQL, Netezza, Oracle, etc.
  • [ ] Optional: Hadoop, Spark, MongoDB
  • [x] SQL

Communication and Data Visualization

  • [ ] Understand visual encoding and communicating what you want the audience to take away from your visualizations
  • [ ] Programming
    • [ ] matplotlib
    • [ ] ggplot
    • [ ] d3.js
  • [ ] Presenting data and convincing people with your data
    • [ ] Know the context of the business situation at hand with regards to your data
    • [ ] Make sure to think 5 steps ahead and predict what their questions will be and where your audience will challenge your assumptions and conclusions
    • [ ] Give out pre-reads to your presentations and have pre-alignment meetings with interested parties before the actual meeting
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,475评论 0 23
  • 长假很无聊,肯定哪都是人,有些厌倦,想想心情也清汤寡水,沉闷寡淡,了无生气。 生活与酒的区别,或许就是这样吧?酒是...
    小妇阿达阅读 338评论 0 1
  • 李白斗酒诗百篇, 洪公把盏换新章; 只因故人居宝地, 不问人间已沧桑。
    华闽南博虎阅读 357评论 0 1