从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程(一)

姓名:杨安东;学号:21021210846;学院:电子工程学院

转载自:https://blog.csdn.net/aBlueMouse/article/details/78710553

【嵌牛导读】超分辨率技术(Super-Resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备、卫星图像和医学影像等领域都有重要的应用价值。

本篇针对端到端的基于深度学习的单张图像超分辨率方法(Single Image Super-Resolution, SISR),总结一下从SRCNN到EDSR的发展历程。

【嵌牛鼻子】SRCNN,高分辨重构技术,深度学习

【嵌牛提问】什么是高分辨重构?

【嵌牛正文】

1. SRCNN

(Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014)

SRCNN是深度学习用在超分辨率重建上的开山之作。SRCNN的网络结构非常简单,仅仅用了三个卷积层,网络结构如下图所示。


SRCNN首先使用双三次(bicubic)插值将低分辨率图像放大成目标尺寸,接着通过三层卷积网络拟合非线性映射,最后输出高分辨率图像结果。本文中,作者将三层卷积的结构解释成三个步骤:图像块的提取和特征表示,特征非线性映射和最终的重建。

三个卷积层使用的卷积核的大小分为为9x9,,1x1和5x5,前两个的输出特征个数分别为64和32。用Timofte数据集(包含91幅图像)和ImageNet大数据集进行训练。使用均方误差(Mean Squared Error, MSE)作为损失函数,有利于获得较高的PSNR。

code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

2. FSRCNN

(Accelerating the Super-Resolution Convolutional Neural Network, ECCV2016)

FSRCNN与SRCNN都是香港中文大学Dong Chao, Xiaoou Tang等人的工作。FSRCNN是对之前SRCNN的改进,主要在三个方面:一是在最后使用了一个反卷积层放大尺寸,因此可以直接将原始的低分辨率图像输入到网络中,而不是像之前SRCNN那样需要先通过bicubic方法放大尺寸。二是改变特征维数,使用更小的卷积核和使用更多的映射层。三是可以共享其中的映射层,如果需要训练不同上采样倍率的模型,只需要fine-tuning最后的反卷积层。

由于FSRCNN不需要在网络外部进行放大图片尺寸的操作,同时通过添加收缩层和扩张层,将一个大层用一些小层来代替,因此FSRCNN与SRCNN相比有较大的速度提升。FSRCNN在训练时也可以只fine-tuning最后的反卷积层,因此训练速度也更快。FSRCNN与SCRNN的结构对比如下图所示。


FSRCNN可以分为五个部分。特征提取:SRCNN中针对的是插值后的低分辨率图像,选取的核大小为9×9,这里直接是对原始的低分辨率图像进行操作,因此可以选小一点,设置为5×5。收缩:通过应用1×1的卷积核进行降维,减少网络的参数,降低计算复杂度。非线性映射:感受野大,能够表现的更好。SRCNN中,采用的是5×5的卷积核,但是5×5的卷积核计算量会比较大。用两个串联的3×3的卷积核可以替代一个5×5的卷积核,同时两个串联的小卷积核需要的参数3×3×2=18比一个大卷积核5×5=25的参数要小。FSRCNN网络中通过m个核大小为3×3的卷积层进行串联。扩张:作者发现低维度的特征带来的重建效果不是太好,因此应用1×1的卷积核进行扩维,相当于收缩的逆过程。反卷积层:可以堪称是卷积层的逆操作,如果步长为n,那么尺寸放大n倍,实现了上采样的操作。

FSRCNN中激活函数采用PReLU,损失函数仍然是均方误差。对CNN来说,Set91并不足够去训练大的网络结构,FSRCNN提出general-100 + Set91进行充当训练集。并且进行数据增强,1)缩小尺寸为原来的0.9, 0.8, 0.7和0.6。2)旋转 90°,180°和270°,因此获得了数据量的提升。

code: http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html

————————————————

版权声明:本文为CSDN博主「aBlueMouse」的原创文章,遵循CC 4.0 BY-SA版权协议。

原文链接:https://blog.csdn.net/aBlueMouse/article/details/78710553

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容