限流,熔断,降级

转自https://blog.csdn.net/chunlongyu/article/details/53259014?from=singlemessage

在今天,基于SOA的架构已经大行其道。伴随着架构的SOA化,相关联的服务熔断、降级、限流等思想,也在各种技术讲座中频繁出现。本文将结合Netflix开源的Hystrix框架,对这些思想做一个梳理。

背景

伴随着业务复杂性的提高,系统的不断拆分,一个面向用户端的API,其内部的RPC调用层层嵌套,调用链条可能会非常长。这会造成以下几个问题:

API接口可用性降低

引用Hystrix官方的一个例子,假设tomcat对外提供的一个application,其内部依赖了30个服务,每个服务的可用性都很高,为99.99%。那整个applicatiion的可用性就是:99.99%的30次方 = 99.7%,即0.3%的失败率。

这也就意味着,每1亿个请求,有30万个失败;按时间来算,就是每个月的故障时间超过2小时。

系统被block

假设一个请求的调用链上面有10个服务,只要这10个服务中有1个超时,就会导致这个请求超时。

更严重的,如果该请求的并发数很高,所有该请求在短时间内都被block(等待超时),tomcat的所有线程都block在此请求上,导致其他请求没办法及时响应。

服务熔断

为了解决上述问题,服务熔断的思想被提出来。类似现实世界中的“保险丝“,当某个异常条件被触发,直接熔断整个服务,而不是一直等到此服务超时。

熔断的触发条件可以依据不同的场景有所不同,比如统计一个时间窗口内失败的调用次数。

实现原理

实现原理讲起来很简单,其实就是不让客户端“裸调“服务器的rpc接口,而是在客户端包装一层。就在这个包装层里面,实现熔断逻辑。

拿Hystrix的helloword举例:

public class CommandHelloWorld extends HystrixCommand<String> {

    private final String name;

    public CommandHelloWorld(String name) {

        super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));

        this.name = name;

    }

    @Override

    protected String run() {

        //关键点:把一个RPC调用,封装在一个HystrixCommand里面

        return "Hello " + name + "!";

    }

}

//客户端调用:以前是直接调用远端RPC接口,现在是把RPC接口封装到HystrixCommand里面,它内部完成熔断逻辑

String s = new CommandHelloWorld("World").execute();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

隔离策略: 线程 vs 信号量

缺省的,上面的HystrixCommand是被扔到一个线程中执行的,也就是说,缺省是线程隔离策略。

还有一种策略就是不搞线程池,直接在调用者线程中执行,也就是信号量的隔离策略。

关于这2者的详细区别,可以去参见官网。

熔断的参数配置

Hystrix提供了如下的几个关键参数,来对一个熔断器进行配置:

circuitBreaker.requestVolumeThreshold //滑动窗口的大小,默认为20

circuitBreaker.sleepWindowInMilliseconds //过多长时间,熔断器再次检测是否开启,默认为5000,即5s钟

circuitBreaker.errorThresholdPercentage //错误率,默认50%

3个参数放在一起,所表达的意思就是:

每当20个请求中,有50%失败时,熔断器就会打开,此时再调用此服务,将会直接返回失败,不再调远程服务。直到5s钟之后,重新检测该触发条件,判断是否把熔断器关闭,或者继续打开。

服务降级

有了熔断,就得有降级。所谓降级,就是当某个服务熔断之后,服务器将不再被调用,此时客户端可以自己准备一个本地的fallback回调,返回一个缺省值。

这样做,虽然服务水平下降,但好歹可用,比直接挂掉要强,当然这也要看适合的业务场景。

关于Hystrix中fallback的使用,此处不详述,参见官网。

服务限流

限流在日常生活中也很常见,比如节假日你去一个旅游景点,为了不把景点撑爆,管理部门通常会在外面设置拦截,限制景点的进入人数(等有人出来之后,再放新的人进去)。

对应到计算机中,比如要搞活动,秒杀等,通常都会限流。

说到限流,有个关键问题就是:你根据什么策略进行限制??

比如在Hystrix中,如果是线程隔离,可以通过线程数 + 队列大小限制;如果是信号量隔离,可以设置最大并发请求数。

另外一个常见的策略就是根据QPS限制,比如我知道我调用的一个db服务,qps是3000,那如果不限制,超过3000,db就可能被打爆。这个时候,我可用在服务端做这个限流逻辑,也可以在客户端做。

现在一般成熟的RPC框架,都有参数直接设置这个。

还有一些场景下,可用限制总数:比如连接数,业务层面限制“库存“总量等等。。

限流的技术原理 -令牌桶算法

关于限流的原理,相信很多人都听说过令牌桶算法,Guava的RateLimiter也已经有成熟做法,这个自己去搜索之。

此处想强调的是,令牌桶算法针对的是限制“速率“。至于其他限制策略,比如限制总数,限制某个业务量的count值,则要具体业务场景具体分析。

异步RPC

异步RPC主要目的是提高并发,比如你的接口,内部调用了3个服务,时间分别为T1, T2, T3。如果是顺序调用,则总时间是T1 + T2 + T3;如果并发调用,总时间是Max(T1,T2,T3)。

当然,这里有1个前提条件,这3个调用直接,互相不依赖。

同样,一般成熟的RPC框架,本身都提高了异步化接口,Future或者Callback形式。

同样,Hystrix也提高了同步调用、异步调用方式,此处不再详述。

总结

服务限流、熔断、降级、异步RPC是基于SOA的分布式系统中一些常见的基本策略,并且这些策略现在都有成熟的开源框架支持。用好这些策略,对整个系统的容错性、稳定性有很大帮助

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容