为什么Eureka比ZooKeeper更适合做注册中心

来源:https://www.cnblogs.com/jieqing/p/8394001.html
作者:jieqing

刚开始看到Eureka这个单词的时候真心不会念,查了后发现他有一个好听的名字,来,大家一起念 [ jʊ'rikə ]

简介

Eureka本身是Netflix开源的一款提供服务注册和发现的产品,并且提供了相应的Java封装。在它的实现中,节点之间相互平等,部分注册中心的节点挂掉也不会对集群造成影响,即使集群只剩一个节点存活,也可以正常提供发现服务。哪怕是所有的服务注册节点都挂了,Eureka
Clients(客户端)上也会缓存服务调用的信息。这就保证了我们微服务之间的互相调用足够健壮。
Zookeeper主要为大型分布式计算提供开源的分布式配置服务、同步服务和命名注册。曾经是Hadoop项目中的一个子项目,用来控制集群中的数据,目前已升级为独立的顶级项目。很多场景下也用它作为Service发现服务解决方案。

对比

在分布式系统中有个著名的CAP定理(C-数据一致性;A-服务可用性;P-服务对网络分区故障的容错性,这三个特性在任何分布式系统中不能同时满足,最多同时满足两个);

Zookeeper

Zookeeper是基于CP来设计的,即任何时刻对Zookeeper的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性,但是它不能保证每次服务请求的可用性。从实际情况来分析,在使用Zookeeper获取服务列表时,如果zookeeper正在选主,或者Zookeeper集群中半数以上机器不可用,那么将无法获得数据。所以说,Zookeeper不能保证服务可用性。
诚然,在大多数分布式环境中,尤其是涉及到数据存储的场景,数据一致性应该是首先被保证的,这也是zookeeper设计成CP的原因。但是对于服务发现场景来说,情况就不太一样了:针对同一个服务,即使注册中心的不同节点保存的服务提供者信息不尽相同,也并不会造成灾难性的后果。

因为对于服务消费者来说,能消费才是最重要的——拿到可能不正确的服务实例信息后尝试消费一下,也好过因为无法获取实例信息而不去消费。

(尝试一下可以快速失败,之后可以更新配置并重试)所以,对于服务发现而言,可用性比数据一致性更加重要——AP胜过CP。

Eureka

而Spring Cloud Netflix在设计Eureka时遵守的就是AP原则。EurekaServer也可以运行多个实例来构建集群,解决单点问题,但不同于ZooKeeper的选举leader的过程,Eureka Server采用的是Peer to Peer对等通信。这是一种去中心化的架构,无master/slave区分,每一个Peer都是对等的。在这种架构中,节点通过彼此互相注册来提高可用性,每个节点需要添加一个或多个有效的serviceUrl指向其他节点。每个节点都可被视为其他节点的副本。

如果某台Eureka Server宕机,Eureka Client的请求会自动切换到新的EurekaServer节点,当宕机的服务器重新恢复后,Eureka会再次将其纳入到服务器集群管理之中。当节点开始接受客户端请求时,所有的操作都会进行replicateToPeer(节点间复制)操作,将请求复制到其他EurekaServer当前所知的所有节点中。

一个新的Eureka Server节点启动后,会首先尝试从邻近节点获取所有实例注册表信息,完成初始化。EurekaServer通过getEurekaServiceUrls()方法获取所有的节点,并且会通过心跳续约的方式定期更新。默认配置下,如果Eureka
Server在一定时间内没有接收到某个服务实例的心跳,EurekaServer将会注销该实例(默认为90秒,通过eureka.instance.lease-expiration-duration-in-seconds配置)。当Eureka Server节点在短时间内丢失过多的心跳时(比如发生了网络分区故障),那么这个节点就会进入自我保护模式。

什么是自我保护模式?

默认配置下,如果Eureka Server每分钟收到心跳续约的数量低于一个阈值(instance的数量 (60/每个instance的心跳间隔秒数) 自我保护系数),并且持续15分钟,就会触发自我保护。在自我保护模式中,EurekaServer会保护服务注册表中的信息,不再注销任何服务实例。当它收到的心跳数重新恢复到阈值以上时,该EurekaServer节点就会自动退出自我保护模式。它的设计哲学前面提到过,那就是宁可保留错误的服务注册信息,也不盲目注销任何可能健康的服务实例。该模式可以通过eureka.server.enable-self-preservation = false来禁用,同时eureka.instance.lease-renewal-interval-in-seconds可以用来更改心跳间隔,eureka.server.renewal-percent-threshold可以用来修改自我保护系数(默认0.85)。

总结

ZooKeeper基于CP,不保证高可用,如果zookeeper正在选主,或者Zookeeper集群中半数以上机器不可用,那么将无法获得数据。Eureka基于AP,能保证高可用,即使所有机器都挂了,也能拿到本地缓存的数据。作为注册中心,其实配置是不经常变动的,只有发版和机器出故障时会变。对于不经常变动的配置来说,CP是不合适的,而AP在遇到问题时可以用牺牲一致性来保证可用性,既返回旧数据,缓存数据。

所以理论上Eureka是更适合作注册中心。而现实环境中大部分项目可能会使用ZooKeeper,那是因为集群不够大,并且基本不会遇到用做注册中心的机器一半以上都挂了的情况。所以实际上也没什么大问题。

推荐

学习资料分享

12 套 微服务、Spring Boot、Spring Cloud 核心技术资料,这是部分资料目录:

  • Spring Security 认证与授权

  • Spring Boot 项目实战(中小型互联网公司后台服务架构与运维架构)

  • Spring Boot 项目实战(企业权限管理项目))

  • Spring Cloud 微服务架构项目实战(分布式事务解决方案)

  • 公众号后台回复arch028获取资料::

    image

    <figcaption style="line-height: inherit; margin: 0px; padding: 0px; margin-top: 10px; text-align: center; color: rgb(153, 153, 153); font-size: 0.7em;"></figcaption>

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343