动手学深度学习PyTorch版-Task01/Task02

1. 线性回归

(仅供学习班打卡使用)

损失函数

在模型训练中,我们需要衡量价格预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差越小。一个常用的选择是平方函数。 它在评估索引为的样本误差的表达式为

l^{(i)}(\mathbf{w}, b) = \frac{1}{2}\left(\hat{y}^{(i)} - y^{(i)}\right)^2,

L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2.

优化函数 - 随机梯度下降

(\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta} {|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b)

定义优化函数

在这里优化函数使用的是小批量随机梯度下降:

 def sgd(params, lr, batch_size): 
    for param in params:
        param.data -= lr * param.grad / batch_size # ues .data to operate param without gradient track

训练模型(从零实现)

# super parameters init
lr = 0.03
num_epochs = 5
#两个超参数

net = linreg
loss = squared_loss

# training
for epoch in range(num_epochs):  # training repeats num_epochs times
    # in each epoch, all the samples in dataset will be used once
    ## 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    # X is the feature and y is the label of a batch sample
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  
        # calculate the gradient of batch sample loss 
        l.backward()  
        # using small batch random gradient descent to iter model parameters
        sgd([w, b], lr, batch_size)  
        # reset parameter gradient参数梯度数据清零,以备下一次存储新的梯度数据。
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))

线性回归模型使用pytorch的简洁实现

import torch
from torch import nn
import numpy as np
torch.manual_seed(1)

print(torch.__version__)
torch.set_default_tensor_type('torch.FloatTensor')

生成数据集

num_inputs = 2
num_examples = 1000

true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

定义模型

class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()      # call father function to init 
        self.linear = nn.Linear(n_feature, 1)  # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`

    def forward(self, x):
        y = self.linear(x)
        return y
    
net = LinearNet(num_inputs)
print(net)
# ways to init a multilayer network
# method one
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # other layers can be added here
    )

# method two
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......

# method three
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
          ('linear', nn.Linear(num_inputs, 1))
          # ......
        ]))

print(net)
print(net[0])

定义损失函数

loss = nn.MSELoss()    # nn built-in squared loss function
                       # function prototype: `torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')`

定义优化函数

import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03)   # built-in random gradient descent function
print(optimizer)  # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)`

2.softmax回归

softmax的基本概念

  • 分类问题
    一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度。
    图像中的4像素分别记为x_1, x_2, x_3, x_4
    假设真实标签为狗、猫或者鸡,这些标签对应的离散值为y_1, y_2, y_3
    我们通常使用离散的数值来表示类别,例如y_1=1, y_2=2, y_3=3

  • 权重矢量
    \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{21} + x_3 w_{31} + x_4 w_{41} +b_1 \end{aligned}

\begin{aligned} o_2 &= x_1 w_{12} + x_2 w_{22} + x_3 w_{32} + x_4 w_{42} + b_2 \end{aligned}

\begin{aligned} o_2 &= x_1 w_{13} + x_2 w_{23} + x_3 w_{33} + x_4 w_{43} + b_3 \end{aligned}

  • 神经网络图
    下图用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出o_1, o_2, o_3的计算都要依赖于所有的输入x_1, x_2, x_3, x_4,softmax回归的输出层也是一个全连接层。

\begin{aligned}softmax回归是一个单层神经网络\end{aligned}

既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值o_i当作预测类别是i的置信度,并将值最大的输出所对应的类作为预测输出,即输出 \underset{i}{\arg\max} o_i。例如,如果o_1,o_2,o_3分别为0.1,10,0.1,由于o_2最大,那么预测类别为2,其代表猫。

  • 输出问题
    直接使用输出层的输出有两个问题:
    1. 一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。例如,刚才举的例子中的输出值10表示“很置信”图像类别为猫,因为该输出值是其他两类的输出值的100倍。但如果o_1=o_3=10^3,那么输出值10却又表示图像类别为猫的概率很低。
    2. 另一方面,由于真实标签是离散值,这些离散值与不确定范围的输出值之间的误差难以衡量。

softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:

\hat{y}_1, \hat{y}_2, \hat{y}_3 = \text{softmax}(o_1, o_2, o_3)

其中

\hat{y}1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)}.

容易看出\hat{y}_1 + \hat{y}_2 + \hat{y}_3 = 10 \leq \hat{y}_1, \hat{y}_2, \hat{y}_3 \leq 1,因此\hat{y}_1, \hat{y}_2, \hat{y}_3是一个合法的概率分布。这时候,如果\hat{y}_2=0.8,不管\hat{y}_1\hat{y}_3的值是多少,我们都知道图像类别为猫的概率是80%。此外,我们注意到

\underset{i}{\arg\max} o_i = \underset{i}{\arg\max} \hat{y}_i

因此softmax运算不改变预测类别输出。

  • 计算效率
    • 单样本矢量计算表达式
      为了提高计算效率,我们可以将单样本分类通过矢量计算来表达。在上面的图像分类问题中,假设softmax回归的权重和偏差参数分别为

\boldsymbol{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{bmatrix} \quad \boldsymbol\quad \boldsymbol{b} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}

设高和宽分别为2个像素的图像样本i的特征为

\boldsymbol{x}^{(i)} = \begin{bmatrix}x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)}\end{bmatrix}

输出层的输出为

\boldsymbol{o}^{(i)} = \begin{bmatrix}o_1^{(i)} & o_2^{(i)} & o_3^{(i)}\end{bmatrix},

预测为狗、猫或鸡的概率分布为

\boldsymbol{\hat{y}}^{(i)} = \begin{bmatrix}\hat{y}_1^{(i)} & \hat{y}_2^{(i)} & \hat{y}_3^{(i)}\end{bmatrix}

softmax回归对样本i分类的矢量计算表达式为

\begin{aligned} \boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)}) \end{aligned}

  • 小批量矢量计算表达式
    为了进一步提升计算效率,我们通常对小批量数据做矢量计算。广义上讲,给定一个小批量样本,其批量大小为n,输入个数(特征数)为d,输出个数(类别数)为q。设批量特征为\boldsymbol{X} \in \mathbb{R}^{n \times d}。假设softmax回归的权重和偏差参数分别为\boldsymbol{W} \in \mathbb{R}^{d \times q}\boldsymbol{b} \in \mathbb{R}^{1 \times q}。softmax回归的矢量计算表达式为

\begin{aligned} \boldsymbol{O} &= \boldsymbol{X} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{Y}} &= \text{softmax}(\boldsymbol{O}), \end{aligned}

其中的加法运算使用了广播机制,\boldsymbol{O}, \boldsymbol{\hat{Y}} \in \mathbb{R}^{n \times q}且这两个矩阵的第i行分别为样本i的输出\boldsymbol{o}^{(i)}和概率分布\boldsymbol{\hat{y}}^{(i)}

交叉熵损失函数

对于样本i,我们构造向量\boldsymbol{y}^{(i)}\in \mathbb{R}^{q} ,使其第y^{(i)}(样本i类别的离散数值)个元素为1,其余为0。这样我们的训练目标可以设为使预测概率分布\boldsymbol{\hat y}^{(i)}尽可能接近真实的标签概率分布\boldsymbol{y}^{(i)}

  • 平方损失估计

\begin{aligned}Loss = |\boldsymbol{\hat y}^{(i)}-\boldsymbol{y}^{(i)}|^2/2\end{aligned}

然而,想要预测分类结果正确,我们其实并不需要预测概率完全等于标签概率。例如,在图像分类的例子里,如果y^{(i)}=3,那么我们只需要\hat{y}^{(i)}_3比其他两个预测值\hat{y}^{(i)}_1\hat{y}^{(i)}_2大就行了。即使\hat{y}^{(i)}_3值为0.6,不管其他两个预测值为多少,类别预测均正确。而平方损失则过于严格,例如\hat y^{(i)}_1=\hat y^{(i)}_2=0.2\hat y^{(i)}_1=0, \hat y^{(i)}_2=0.4的损失要小很多,虽然两者都有同样正确的分类预测结果。

改善上述问题的一个方法是使用更适合衡量两个概率分布差异的测量函数。其中,交叉熵(cross entropy)是一个常用的衡量方法:

H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)},

其中带下标的y_j^{(i)}是向量\boldsymbol y^{(i)}中非0即1的元素,需要注意将它与样本i类别的离散数值,即不带下标的y^{(i)}区分。在上式中,我们知道向量\boldsymbol y^{(i)}中只有第y^{(i)}个元素y^{(i)}{y^{(i)}}为1,其余全为0,于是H(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}) = -\log \hat y_{y^{(i)}}^{(i)}。也就是说,交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。当然,遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。

假设训练数据集的样本数为n,交叉熵损失函数定义为
\ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ),

其中\boldsymbol{\Theta}代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成\ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)}。从另一个角度来看,我们知道最小化\ell(\boldsymbol{\Theta})等价于最大化\exp(-n\ell(\boldsymbol{\Theta}))=\prod_{i=1}^n \hat y_{y^{(i)}}^{(i)},即最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。

softmax回归模型

\begin{aligned} \boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)})\end{aligned}

def net(X):
    return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)

定义损失函数

H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)},

\ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ),

\ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)}

y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))
def cross_entropy(y_hat, y):
    return - torch.log(y_hat.gather(1, y.view(-1, 1)))

定义准确率

def accuracy(y_hat, y):
    return (y_hat.argmax(dim=1) == y).float().mean().item()
print(accuracy(y_hat, y))
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
        n += y.shape[0]
    return acc_sum / n

训练模型

num_epochs, lr = 5, 0.1

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()
            
            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            
            l.backward()
            if optimizer is None:
                d2l.sgd(params, lr, batch_size)
            else:
                optimizer.step() 
            
            
            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)

模型预测

现在我们的模型训练完了,可以进行一下预测,我们的这个模型训练的到底准确不准确。
现在就可以演示如何对图像进行分类了。给定一系列图像(第三行图像输出),我们比较一下它们的真实标签(第一行文本输出)和模型预测结果(第二行文本输出)。

X, y = iter(test_iter).next()

true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]

d2l.show_fashion_mnist(X[0:9], titles[0:9])

多层感知机的基本知识

深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

隐藏层

下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。

image

表达公式

具体来说,给定一个小批量样本\boldsymbol{X} \in \mathbb{R}^{n \times d},其批量大小为n,输入个数为d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为\boldsymbol{H},有\boldsymbol{H} \in \mathbb{R}^{n \times h}。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为\boldsymbol{W}_h \in \mathbb{R}^{d \times h}\boldsymbol{b}_h \in \mathbb{R}^{1 \times h},输出层的权重和偏差参数分别为\boldsymbol{W}_o \in \mathbb{R}^{h \times q}\boldsymbol{b}_o \in \mathbb{R}^{1 \times q}

我们先来看一种含单隐藏层的多层感知机的设计。其输出\boldsymbol{O} \in \mathbb{R}^{n \times q}的计算为

\begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}

也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到

\boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o.

从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为\boldsymbol{W}_h\boldsymbol{W}_o,偏差参数为\boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

激活函数

上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。

下面我们介绍几个常用的激活函数:

1. ReLU函数

ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x,该函数定义为

\text{ReLU}(x) = \max(x, 0).

可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。

%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
def xyplot(x_vals, y_vals, name):
    # d2l.set_figsize(figsize=(5, 2.5))
    plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
    plt.xlabel('x')
    plt.ylabel(name + '(x)')
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')
y.sum().backward()
xyplot(x, x.grad, 'grad of relu')

2.Sigmoid函数

sigmoid函数可以将元素的值变换到0和1之间:

\text{sigmoid}(x) = \frac{1}{1+\exp(-x)}.

y = x.sigmoid()
xyplot(x, y, 'sigmoid')
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')

3.tanh函数

tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

\text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}.

我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。

y = x.tanh()
xyplot(x, y, 'tanh')
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')

关于激活函数的选择

ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。

用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。

在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。

在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。

循环神经网络

循环神经网络

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为T的词的序列w_1, w_2, \ldots, w_T,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P(w_1, w_2, \ldots, w_T)

本节我们介绍基于统计的语言模型,主要是n元语法(n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为T的词的序列w_1, w_2, \ldots, w_T,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P(w_1, w_2, \ldots, w_T).

本节我们介绍基于统计的语言模型,主要是n元语法(n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型

假设序列w_1, w_2, \ldots, w_T中的每个词是依次生成的,我们有

\begin{align*} P(w_1, w_2, \ldots, w_T) &= \prod_{t=1}^T P(w_t \mid w_1, \ldots, w_{t-1})\\ &= P(w_1)P(w_2 \mid w_1) \cdots P(w_T \mid w_1w_2\cdots w_{T-1}) \end{align*}

例如,一段含有4个词的文本序列的概率

P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).

语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w_1的概率可以计算为:

\hat P(w_1) = \frac{n(w_1)}{n}

其中n(w_1)为语料库中以w_1作为第一个词的文本的数量,n为语料库中文本的总数量。

类似的,给定w_1情况下,w_2的条件概率可以计算为:

\hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)}

其中n(w_1, w_2)为语料库中以w_1作为第一个词,w_2作为第二个词的文本的数量。

n元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面n个词相关,即n阶马尔可夫链(Markov chain of order n),如果n=1,那么有P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)。基于n-1阶马尔可夫链,我们可以将语言模型改写为

P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .

以上也叫n元语法(n-grams),它是基于n - 1阶马尔可夫链的概率语言模型。例如,当n=2时,含有4个词的文本序列的概率就可以改写为:

\begin{align*} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) \end{align*}

n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列w_1, w_2, w_3, w_4在一元语法、二元语法和三元语法中的概率分别为

\begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned}

n较小时,n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当n较大时,n元语法需要计算并存储大量的词频和多词相邻频率。

时序数据的采样

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即X=“想要有直升”,Y=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

  • X:“想要有直升”,Y:“要有直升机”
  • X:“要有直升机”,Y:“有直升机,”
  • X:“有直升机,”,Y:“直升机,想”
  • ...
  • X:“要和你飞到”,Y:“和你飞到宇”
  • X:“和你飞到宇”,Y:“你飞到宇宙”
  • X:“你飞到宇宙”,Y:“飞到宇宙去”

可以看到,如果序列的长度为T,时间步数为n,那么一共有T-n个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
    num_examples = (len(corpus_indices) - 1) // num_steps  # 下取整,得到不重叠情况下的样本个数
    example_indices = [i * num_steps for i in range(num_examples)]  # 每个样本的第一个字符在corpus_indices中的下标
    random.shuffle(example_indices)

    def _data(i):
        # 返回从i开始的长为num_steps的序列
        return corpus_indices[i: i + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    for i in range(0, num_examples, batch_size):
        # 每次选出batch_size个随机样本
        batch_indices = example_indices[i: i + batch_size]  # 当前batch的各个样本的首字符的下标
        X = [_data(j) for j in batch_indices]
        Y = [_data(j + 1) for j in batch_indices]
        yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X和标签Y

my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')

相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    corpus_len = len(corpus_indices) // batch_size * batch_size  # 保留下来的序列的长度
    corpus_indices = corpus_indices[: corpus_len]  # 仅保留前corpus_len个字符
    indices = torch.tensor(corpus_indices, device=device)
    indices = indices.view(batch_size, -1)  # resize成(batch_size, )
    batch_num = (indices.shape[1] - 1) // num_steps
    for i in range(batch_num):
        i = i * num_steps
        X = indices[:, i: i + num_steps]
        Y = indices[:, i + 1: i + num_steps + 1]
        yield X, Y

同样的设置下,打印相邻采样每次读取的小批量样本的输入X和标签Y。相邻的两个随机小批量在原始序列上的位置相毗邻。

for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')

GRU⻔控循环神经⽹络

RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)
⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系
RNN:

image

H_{t} = ϕ(X_{t}W_{xh} + H_{t-1}W_{hh} + b_{h})
GRU:

R_{t} = σ(X_tW_{xr} + H_{t−1}W_{hr} + b_r)\\ Z_{t} = σ(X_tW_{xz} + H_{t−1}W_{hz} + b_z)\\ \widetilde{H}_t = tanh(X_tW_{xh} + (R_t ⊙H_{t−1})W_{hh} + b_h)\\ H_t = Z_t⊙H_{t−1} + (1−Z_t)⊙\widetilde{H}_t
• 重置⻔有助于捕捉时间序列⾥短期的依赖关系;
• 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。

GRU模型
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid(torch.matmul(X, W_xz) + torch.matmul(H, W_hz) + b_z)
        R = torch.sigmoid(torch.matmul(X, W_xr) + torch.matmul(H, W_hr) + b_r)
        H_tilda = torch.tanh(torch.matmul(X, W_xh) + R * torch.matmul(H, W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)
训练模型
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']
d2l.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

LSTM

** 长短期记忆long short-term memory **:
遗忘门:控制上一时间步的记忆细胞
输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动

I_t = σ(X_tW_{xi} + H_{t−1}W_{hi} + b_i) \\ F_t = σ(X_tW_{xf} + H_{t−1}W_{hf} + b_f)\\ O_t = σ(X_tW_{xo} + H_{t−1}W_{ho} + b_o)\\ \widetilde{C}_t = tanh(X_tW_{xc} + H_{t−1}W_{hc} + b_c)\\ C_t = F_t ⊙C_{t−1} + I_t ⊙\widetilde{C}_t\\ H_t = O_t⊙tanh(C_t)

初始化参数
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)

def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
    
    W_xi, W_hi, b_i = _three()  # 输入门参数
    W_xf, W_hf, b_f = _three()  # 遗忘门参数
    W_xo, W_ho, b_o = _three()  # 输出门参数
    W_xc, W_hc, b_c = _three()  # 候选记忆细胞参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q])

def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), 
            torch.zeros((batch_size, num_hiddens), device=device))
LSTM模型
def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i)
        F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f)
        O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o)
        C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * C.tanh()
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H, C)
训练模型
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

d2l.train_and_predict_rnn(lstm, get_params, init_lstm_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

深度循环神经网络

\boldsymbol{H}_t^{(1)} = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(1)} + \boldsymbol{H}_{t-1}^{(1)} \boldsymbol{W}_{hh}^{(1)} + \boldsymbol{b}_h^{(1)})\\ \boldsymbol{H}_t^{(\ell)} = \phi(\boldsymbol{H}_t^{(\ell-1)} \boldsymbol{W}_{xh}^{(\ell)} + \boldsymbol{H}_{t-1}^{(\ell)} \boldsymbol{W}_{hh}^{(\ell)} + \boldsymbol{b}_h^{(\ell)})\\ \boldsymbol{O}_t = \boldsymbol{H}_t^{(L)} \boldsymbol{W}_{hq} + \boldsymbol{b}_q

num_hiddens=256
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

lr = 1e-2 # 注意调整学习率

gru_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens,num_layers=2)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

双向循环神经网络

\begin{aligned} \overrightarrow{\boldsymbol{H}}_t &= \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(f)} + \overrightarrow{\boldsymbol{H}}_{t-1} \boldsymbol{W}_{hh}^{(f)} + \boldsymbol{b}_h^{(f)})\\ \overleftarrow{\boldsymbol{H}}_t &= \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(b)} + \overleftarrow{\boldsymbol{H}}_{t+1} \boldsymbol{W}_{hh}^{(b)} + \boldsymbol{b}_h^{(b)}) \end{aligned}
\boldsymbol{H}_t=(\overrightarrow{\boldsymbol{H}}_{t}, \overleftarrow{\boldsymbol{H}}_t)
\boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q

num_hiddens=128
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e-2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

lr = 1e-2 # 注意调整学习率

gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens,bidirectional=True)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容