2023-01-04

Nat Mac Int | 机器学习液相色谱-串联质谱提升小分子识别率

原创 图灵基因 图灵基因 2023-01-04 11:43 发表于江苏

收录于合集#前沿生物大数据分析

阿尔托大学(Aalto University)和卢森堡大学(University of Luxembourg)的研究人员报告称,他们开发了一种新的机器学习模型,将有助于识别小分子,并将其应用于医学、药物发现和环境化学。

他们的研究结果“Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data”,发表在《Nature Machine Intelligence》杂志上。

研究人员写道:“尽管在过去十年中预测方法和工具取得了快速进展,但生物样本中小分子的结构注释仍然是非靶向代谢组学的一个关键瓶颈。液相色谱-串联质谱是最广泛使用的分析平台之一,可以检测样本中的数千个分子,其中绝大多数即使使用最好的方法也无法识别。在这里,我们介绍了LC-MS2Struct,这是一种用于液相色谱-串联质谱(LC-MS2)测量产生的小分子数据结构注释的机器学习框架。”

阿尔托大学计算机科学教授Juho Rousu博士解释道:“如果不对候选分子做一些额外的假设,即使是最好的方法也不能识别样本中超过40%的分子。”

这种新方法可能能够识别代谢紊乱,如糖尿病,甚至癌症。

阿尔托大学机器学习与生物信息学博士生Eric Bach说:“我们的研究表明,虽然绝对保留时间可能会有所不同,但不同实验室的测量结果表明,保留顺序是稳定的。这使我们能够首次合并所有关于代谢物的公开数据,并将其输入到我们的机器学习模型中。”

卢森堡大学卢森堡系统生物医学中心(LCSB)副教授Emma Schymanski博士表示:“事实上,使用立体化学提高了识别性能,这对所有代谢物识别方法的开发人员来说都是一个启示。这种方法也可以用来帮助识别和追踪环境中的微污染物,或表征植物细胞中的新代谢物。”

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容