【pySCENIC】SCENIC python版本结果可视化

继续跟着大咖们的步伐学习。(https://www.jianshu.com/p/c47332b880aa

分析结果,用上面pbmc的输出结果。

=====第一步:还是获得loom文件=====

可以使用SCopeLoomR把上个帖子的前两步合成一步。get_count_from_seurat.R文件代码如下:

library(optparse)
op_list <- list(
make_option(c("-i", "--inrds"), type = "character", default = NULL, action = "store", help = "The input of Seurat RDS",metavar="rds"),
make_option(c("-d", "--ident"), type = "character", default = NULL, action = "store", help = "The sample Ident of Seurat object",metavar="idents"),
make_option(c("-s", "--size"), type = "integer", default = NULL, action = "store", help = "The sample size of Seurat object",metavar="size"),
make_option(c("-l", "--label"), type = "character", default = "out", action = "store", help = "The label of output file",metavar="label"),
make_option(c("-a", "--assay"), type = "character", default = "RNA", action = "store", help = "The assay of input file",metavar="assay")
)
parser <- OptionParser(option_list = op_list)
opt = parse_args(parser)

assay <- opt$assay

library(Seurat)
obj <- readRDS(optinrds) if (!is.null(optident)) {
Idents(obj) <- optident size=optsize
if (!is.null(size)) {
obj <- subset(x = obj, downsample = optsize) } saveRDS(obj,"subset.rds") } if (is.null(optlabel)) {
label1 <- 'out'
}else{
label1 <- opt$label
}

library(SCopeLoomR)
outloom <- paste0(label1,".loom")
build_loom(file.name = outloom,dgem = obj@assays[[assay]]@counts)
write.table(obj@meta.data,'metadata_subset.xls',sep='\t',quote=F)

运行如下:Rscript get_count_from_seurat.R -i pbmc.rds -s 20 -l out -a RNA

=== 第二步:运行pySCENIC===

代码和前面一样
./pyscenic_from_loom.sh -i out.loom -n 20

====第三步:计算RSS===

代码和前面一样
Rscript calcRSS_by_scenic.R -l aucell.loom -m metadata_subset.xls -c cell_type

=======第四步:可视化=====

加载一些必要的包

library(Seurat)
library(SCopeLoomR)
library(AUCell)
library(SCENIC)
library(dplyr)
library(KernSmooth)
library(RColorBrewer)
library(plotly)
library(BiocParallel)
library(pheatmap)

library(cowplot)
library(ggpubr)
library(ggsci)
library(ggplot2)
library(tidygraph)
library(ggraph)
library(stringr)

做一些颜色上的基本设置

colpalettes<-unique(c(pal_npg("nrc")(10),pal_aaas("default")(10),pal_nejm("default")(8),pal_lancet("lanonc")(9),
pal_jama("default")(7),pal_jco("default")(10),pal_ucscgb("default")(26),pal_d3("category10")(10),
pal_locuszoom("default")(7),pal_igv("default")(51),
pal_uchicago("default")(9),pal_startrek("uniform")(7),
pal_tron("legacy")(7),pal_futurama("planetexpress")(12),pal_rickandmorty("schwifty")(12),
pal_simpsons("springfield")(16),pal_gsea("default")(12)))

len <- 100

incolor<-c(brewer.pal(8, "Dark2"),brewer.pal(12, "Paired"),brewer.pal(8, "Set2"),brewer.pal(9, "Set1"),colpalettes,rainbow(len))

输入文件的设置

inloom='aucell.loom'
incolor=incolor
inrss='cell_type_rss.rds'
inrds='subset.rds'
infun='median'
ct.col='cell_type'
inregulons=NULL
ingrn='grn.tsv'
ntop1=5
ntop2=50

load data

loom <- open_loom(inloom)

regulons_incidMat <- get_regulons(loom, column.attr.name="Regulons")
regulons <- regulonsToGeneLists(regulons_incidMat)
regulonAUC <- get_regulons_AUC(loom,column.attr.name='RegulonsAUC')
regulonAucThresholds <- get_regulon_thresholds(loom)

embeddings <- get_embeddings(loom)
close_loom(loom)

rss <- readRDS(inrss)
sce <- readRDS(inrds)

calculate RSS fc

df = do.call(rbind,
lapply(1:ncol(rss), function(i){
dat= data.frame(
regulon = rownames(rss),
cluster = colnames(rss)[i],
sd.1 = rss[,i],
sd.2 = apply(rss[,-i], 1, get(infun))
)
}))

dffc = dfsd.1 - df$sd.2

select top regulon

ntopg <- df %>% group_by(cluster) %>% top_n(ntop1, fc)

ntopgene <- unique(ntopg$regulon)
write.table(ntopgene,'sd_regulon_RSS.list',sep='\t',quote=F,row.names=F,col.names=F)

plot rss by cluster

using plotRSS

rssPlot <- plotRSS(rss)
regulonsToPlot <- rssPlotrowOrder rp_df <- rssPlotdf

write.table(regulonsToPlot,'rss_regulon.list',sep='\t',quote=F,row.names=F,col.names=F)
write.table(rp_df,'rssPlot_data.xls',sep='\t',quote=F)

image.png

nlen <- length(regulonsToPlot)
hei <- ceiling(nlen)*0.4
blu<-colorRampPalette(brewer.pal(9,"Blues"))(100)
lgroup <- levels(rssPlotdfcellType)

nlen2 <- length(lgroup)
wei <- nlen2*2
pdf(paste0('regulons_RSS_',ct.col,'_in_dotplot.pdf'))
print(rssPlot$plot)
dev.off()


regulons_RSS_cell_type_in_dotplot.png

sd top gene

anrow = data.frame( group = ntopgcluster) lcolor <- incolor[1:length(unique(ntopgcluster))]
names(lcolor) <- unique(anrow$group)
annotation_colors <- list(group=lcolor)

pn1 = rss[ntopgregulon,] pn2 = rss[unique(ntopgregulon),]
rownames(pn1) <- make.unique(rownames(pn1))
rownames(anrow) <- rownames(pn1)
scale='row'
hei <- ceiling(length(ntopg$regulon)*0.4)

pdf(paste0('regulon_RSS_in_sd_topgene_',ct.col,'.pdf'))
print(
pheatmap(pn1,annotation_row = anrow,scale=scale,annotation_colors=annotation_colors,show_rownames = T,main='sd top regulons')
)
print(
pheatmap(pn2,scale=scale,show_rownames = T, main='sd top unique regulons')
)
dev.off()

regulon_RSS_in_sd_topgene_cell_type_页面_1.png
regulon_RSS_in_sd_topgene_cell_type_页面_2.png

plotRSS gene

pn2 = rss[unique(rp_dfTopic),] scale='row' hei <- ceiling(length(unique(rp_dfTopic))*0.4)
pdf(paste0('regulon_RSS_in_plotRSS_',ct.col,'.pdf'))
print(
pheatmap(pn2,scale=scale,show_rownames = T, main='plotRSS unique regulons')
)
dev.off()

regulon_RSS_in_plotRSS_cell_type.png

all regulons

hei <- ceiling(length(rownames(rss))*0.2)
pdf(paste0('all_regulons_RSS_in_',ct.col,'.pdf'))
print(
pheatmap(rss,scale=scale,show_rownames = T,main='all regulons RSS')
)
dev.off()

all_regulons_RSS_in_cell_type.png

plot rss by all cells

if (is.null(inregulons)){
inregulons <- regulonsToPlot
}else{
inregulons <- intersect(inregulons,rownames(rss))
regulonsToPlot <- inregulons

}

pn3=as.matrix(regulonAUC@assays@data$AUC)
regulon <- rownames(pn3)

regulon <- inregulons

pn3 <- pn3[regulon,]

pn3 <- pn3[,sample(1:dim(pn3)[2],500)]

sce$group1=sce@meta.data[,ct.col]

meta <- sce@meta.data
meta <- meta[order(meta$group1),]

meta <- meta[colnames(pn3),]

ancol = data.frame(meta[,c('group1')])
colnames(ancol) <- c('group1')
rownames(ancol) <- rownames(meta)
lcolor <- incolor[1:length(unique(ntopgcluster))] names(lcolor) <- unique(ntopgcluster)
annotation_colors <- list(group1 =lcolor)

df1 <- ancol
df1cell <- rownames(df1) df1 <- df1[order(df1group1),]
pn3 <- pn3[,rownames(df1)]
torange=c(-2,2)
pn3 <- scales::rescale(pn3,to=torange)
pn3 <- pn3[,rownames(ancol)]

scale='none'
hei <- ceiling(length(unique(regulon))*0.2)
pdf(paste0('all_regulon_activity_in_allcells.pdf'))
print(
pheatmap(pn3,annotation_col = ancol,scale=scale,annotation_colors=annotation_colors,show_rownames = T,show_colnames = F,cluster_cols=F)
)

pheatmap(pn3,scale=scale,show_rownames = T, show_colnames = F,cluster_cols=F)

dev.off()

all_regulon_activity_in_allcells.png

plot in seurat

regulonsToPlot = inregulons
sce$sub_celltype <- sce@meta.data[,ct.col]
sub_regulonAUC <- regulonAUC[,match(colnames(sce),colnames(regulonAUC))]

cellClusters <- data.frame(row.names = colnames(sce),
seurat_clusters = as.character(sceseurat_clusters)) cellTypes <- data.frame(row.names = colnames(sce), celltype = scesub_celltype)

sce@meta.data = cbind(sce@meta.data ,t(sub_regulonAUC@assays@data@listDataAUC[regulonsToPlot,])) Idents(sce) <- scesub_celltype

nlen <- length(regulonsToPlot)
hei <- ceiling(nlen)0.4
blu<-colorRampPalette(brewer.pal(9,"Blues"))(100)
nlen2 <- length(unique(sce$sub_celltype))
wei <- nlen2
2
pdf('regulons_activity_in_dotplot.pdf')
print(DotPlot(sce, features = unique(regulonsToPlot)) + coord_flip()+
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5))+
scale_color_gradientn(colours = blu)
)
dev.off()

regulons_activity_in_dotplot.png

hei=ceiling(nlen/4)*4
pdf('regulons_activity_in_umap.pdf')
print(DotPlot(sce, features = regulonsToPlot))
print(RidgePlot(sce, features = regulonsToPlot , ncol = 4))
print(VlnPlot(sce, features = regulonsToPlot,pt.size = 0 ))
print(FeaturePlot(sce, features = regulonsToPlot))
dev.off()

会显示类似于下面的图,但是我的测试数据list太多了,就不放了。

640.jpg

grn <- read.table(ingrn,sep='\t',header=T,stringsAsFactors=F)
inregulons1=gsub('[(+)]','',inregulons)

c1 <- which(grn$TF %in% inregulons1)
grn <- grn[c1,]

edge1 <- data.frame()

node1 <- data.frame()

pdf(paste0(ntop2,'_regulon_netplot.pdf'))
for (tf in unique(grnTF)) { tmp <- subset(grn,TF==tf) if (dim(tmp)[1] > ntop2) { tmp <- tmp[order(tmpimportance,decreasing=T),]
tmp <- tmp[1:ntop2,]
}
node2 <- data.frame(tmptarget) node2node.size=1.5
node2$node.colour <- 'black'
colnames(node2) <- c('node','node.size','node.colour')
df1 <- data.frame(node=tf,node.size=2,node.colour='#FFDA00')
node2 <- rbind(df1,node2)

edge2 <- tmp
colnames(edge2) <- c('from','to','edge.width')
edge2edge.colour <- "#1B9E77" torange=c(0.1,1) edge2edge.width <- scales::rescale(edge2$edge.width,to=torange)

graph_data <- tidygraph::tbl_graph(nodes = node2, edges = edge2, directed = T)
p1 <- ggraph(graph = graph_data, layout = "stress", circular = TRUE) + geom_edge_arc(aes(edge_colour = edge.colour, edge_width = edge.width)) +
scale_edge_width_continuous(range = c(1,0.2)) +geom_node_point(aes(colour = node.colour, size = node.size))+ theme_void() +
geom_node_label(aes(label = node,colour = node.colour),size = 3.5, repel = TRUE)
p1 <- p1 + scale_color_manual(values=c('#FFDA00','black'))+scale_edge_color_manual(values=c("#1B9E77"))
print(p1)
}
dev.off()

每个转录因子生成一个网络图

image.png

plot activity heatmap

meta <- sce@meta.data
celltype <- ct.col
cellsPerGroup <- split(rownames(meta),meta[,celltype])
sub_regulonAUC <- regulonAUC[onlyNonDuplicatedExtended(rownames(regulonAUC)),]

Calculate average expression:

regulonActivity_byGroup <- sapply(cellsPerGroup,
function(cells)
rowMeans(getAUC(sub_regulonAUC)[,cells]))
scale='row'
rss <- regulonActivity_byGroup
hei <- ceiling(length(regulonsToPlot)*0.4)
pn1 <- rss[regulonsToPlot,]
pdf(paste0('regulon_activity_in_',ct.col,'.pdf'))
print(
pheatmap(pn1,scale=scale,show_rownames = T, main='regulons activity')
)
dev.off()

regulon_activity_in_cell_type.png

pdf(paste0('all_regulons_activity_in_',ct.col,'.pdf'))
print(
pheatmap(rss,scale=scale,show_rownames = T,main='all regulons activity')
)
dev.off()

all_regulons_activity_in_cell_type.png

calculate fc

df = do.call(rbind,
lapply(1:ncol(rss), function(i){
dat= data.frame(
regulon = rownames(rss),
cluster = colnames(rss)[i],
sd.1 = rss[,i],
sd.2 = apply(rss[,-i], 1, get(infun))
)
}))

dffc = dfsd.1 - df$sd.2

select top regulon

ntopg <- df %>% group_by(cluster) %>% top_n(ntop1, fc)

ntopgene <- unique(ntopg$regulon)
write.table(ntopgene,'sd_regulon_activity.list',sep='\t',quote=F,row.names=F,col.names=F)

anrow = data.frame( group = ntopgcluster) lcolor <- incolor[1:length(unique(ntopgcluster))]
names(lcolor) <- unique(anrowgroup) annotation_colors <- list(group=lcolor) pn1 = rss[ntopgregulon,]
pn2 = rss[unique(ntopgregulon),] rownames(pn1) <- make.unique(rownames(pn1)) rownames(anrow) <- rownames(pn1) scale='row' hei <- ceiling(length(ntopgregulon)*0.4)
pdf(paste0('regulon_activity_in_sd_topgene_',ct.col,'.pdf'))
print(
pheatmap(pn1,annotation_row = anrow,scale=scale,annotation_colors=annotation_colors,show_rownames = T,main='sd top regulons')
)
print(
pheatmap(pn2,scale=scale,show_rownames = T, main='sd top unique regulons ')
)
dev.off()

regulon_activity_in_sd_topgene_cell_type_页面_1.png
regulon_activity_in_sd_topgene_cell_type_页面_2.png

当然可以把整个过程给封装起来了一个函数,放在calcRSS_by_scenic.R函数里面。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容