hier.part包——等级方差分离模型的使用

hier.part: Goodness of Fit Calculation and Hierarchical Partitioning

链接:hier.part包介绍

This function calculates goodness-of-fit measures for the full hierarchy of models using all combinations of N predictor variables using the function all.regs. The function takes the list of goodness-of-fit measures and, using the partition function, applies the hierarchical partitioning algorithm of Chevan and Sutherland (1991) to return a table listing each predictor, its independent contribution (I) and its conjoint contribution with all other variables (J), which cannot be ascribed separately to any one predictor. 

注意:The distribution of joint effects shows the relative contribution of each variable to shared variability in the full model. Negative joint effects are possible for variables that act as 'suppressors' of other variables (Chevan and Sutherland 1991).

Earlier versions of the hier.part package (<1.0) produced a matrix and barplot of percentage distribution of effects as a percentage of the sum of all Is and Js, as shown in Hatt et al. (2004) and Walshet al. (2004). The current version plots the percentage distribution of independent effects only(目前的版本只显示独立影响的比例条形图). The sum of Is equals the goodness-of-fit measure for the full model less the goodness-of-fit value of the null model.

The distribution of joint effects shows the relative contribution of each variable to shared variability in the full model. Negative joint effects are possible for variables that act as ’suppressors’ of other variables (Chevan and Sutherland 1991). The partition routine will not run for more than 12 predictors, but data sets with more than this number of predictors are unlikely to identify ’important’ predictors.



使用

#linear regression of log(electrical conductivity) in

#streams against seven predictor variables

#describing catchment characteristics (from Hatt et al. 2004)

install.packages("hier.part") #安装包

library(hier.part) #加载包

data(urbanwq)  #加载数据

env <- urbanwq[,2:8]  #选择数据列,分离数据列的选择方法 env1 <- env[c(11,21,9,27,28,30)]

hier.part(urbanwq$lec, env, fam = "gaussian", gof = "Rsqu")  #计算

结果

> hier.part(urbanwq$lec, env, fam = "gaussian", gof = "Rsqu")

$gfs

  [1] 0.00000000 0.59047318 0.82682075 0.01098174 0.39635905 0.12282709 0.62445471 0.33033972 0.83410378

[10] 0.59758915 0.62061433 0.65284362 0.77159448 0.60702109 0.82683793 0.82691037 0.83582029 0.85403927

[19] 0.84727070 0.41798147 0.13980912 0.76026824 0.33080645 0.39744819 0.66503431 0.52650125 0.67608730

[28] 0.43330271 0.64633406 0.83447868 0.83411192 0.83965414 0.85551898 0.84727151 0.62061622 0.65949970

[37] 0.82672399 0.62672410 0.65445206 0.77226833 0.62512912 0.77811174 0.66312305 0.82026934 0.82691040

[46] 0.84141253 0.87751308 0.84785650 0.83932285 0.85513956 0.84985538 0.85490360 0.85107746 0.87685251

[55] 0.43348171 0.81801707 0.55827372 0.76851361 0.50536622 0.77107209 0.73969961 0.53654123 0.68316625

[64] 0.67713148 0.83451931 0.84541929 0.87865868 0.84793008 0.84176310 0.85633390 0.85010056 0.85662169

[73] 0.85116200 0.88236321 0.66297682 0.84039075 0.62908864 0.82701685 0.66414800 0.85116957 0.78348135

[82] 0.66312339 0.82956916 0.85200153 0.84338543 0.87900342 0.85317612 0.87755498 0.85162358 0.89200389

[91] 0.85535421 0.85816222 0.88318976 0.88611089 0.83628377 0.61132790 0.82521005 0.77285776 0.74013871

[100] 0.84631087 0.88052535 0.85779318 0.87866729 0.85162457 0.89525987 0.85679323 0.86058475 0.89708584

[109] 0.89557323 0.84575908 0.66461591 0.85137732 0.86367597 0.85322499 0.87916623 0.85818567 0.89224695

[118] 0.89515882 0.88779139 0.83642968 0.88093891 0.86223879 0.89900950 0.90101494 0.90231612 0.86447417

[127] 0.89516613 0.90324171

$IJ

                  I            J      Total

fimp      0.16018583  0.430287348 0.59047318

sconn    0.28970489  0.537115864 0.82682075

sdensep  0.02090086 -0.009919125 0.01098174

unsealden 0.09181298  0.304546072 0.39635905

fcarea    0.03609565  0.086731439 0.12282709

selev    0.21589289  0.408561821 0.62445471

amgeast  0.08864861  0.241691110 0.33033972

$I.perc

          ind.exp.var

fimp        17.734548

sconn      32.073905

sdensep      2.313983

unsealden  10.164829

fcarea      3.996234

selev      23.902006

amgeast      9.814495

$params

$params$full.model

[1] "y ~ fimp + sconn + sdensep + unsealden + fcarea + selev + amgeast"

$params$family

[1] "gaussian"

$params$link

[1] "default"

$params$gof

[1] "Rsqu"

References

Chevan, A. and Sutherland, M. 1991 Hierarchical Partitioning. The American Statistician 45, 90–96. Hatt, B. E., Fletcher, T. D., Walsh, C. J. and Taylor, S. L. 2004 The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environmental Management 34, 112–124.

Mac Nally, R. 2000 Regression and model building in conservation biology, biogeography and ecology: the distinction between and reconciliation of ’predictive’ and ’explanatory’ models. Biodiversity and Conservation 9, 655–671. 

Walsh, C. J., Papas, P. J., Crowther, D., Sim, P. T., and Yoo, J. 2004 Stormwater drainage pipes as a threat to a stream-dwelling amphipod of conservation significance, Austrogammarus australis, insouth-eastern Australia. Biodiversity and Conservation 13, 781–793.


此外:

小白鱼的生统笔记: 使用hier.part包做层次分割(HP)在广义线性模型中分解变量贡献及重要变量识别

https://mp.weixin.qq.com/s/uM_5ygac_ytueu49pyDo5Q

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 12,723评论 28 53
  • 人工智能是什么?什么是人工智能?人工智能是未来发展的必然趋势吗?以后人工智能技术真的能达到电影里机器人的智能水平吗...
    ZLLZ阅读 9,382评论 0 5
  • 首先介绍下自己的背景: 我11年左右入市到现在,也差不多有4年时间,看过一些关于股票投资的书籍,对于巴菲特等股神的...
    瞎投资阅读 11,047评论 3 8
  • ![Flask](...
    极客学院Wiki阅读 12,110评论 0 3