2025-12-01 Docker容器核心技术剖析:架构原理与生命周期管理实践

# Docker容器核心技术剖析:架构原理与生命周期管理实践

## 一、容器技术演进与核心架构

### Linux容器技术基础

Docker容器的核心基于Linux内核的三大机制:

```c

// 简化的容器隔离机制示意

// 1. Namespace 命名空间隔离

int clone_flags = CLONE_NEWUTS |  // 主机名和域名

                  CLONE_NEWPID |  // 进程ID

                  CLONE_NEWNS  |  // 挂载点

                  CLONE_NEWNET |  // 网络

                  CLONE_NEWIPC |  // IPC

                  CLONE_NEWUSER;  // 用户

// 2. Cgroups 资源控制

// /sys/fs/cgroup/ 目录下的控制组

struct cgroup {

    cpu_cfs_quota_us;    // CPU配额

    memory_limit_in_bytes; // 内存限制

    blkio_weight;        // 块IO权重

};

// 3. UnionFS 联合文件系统

struct unionfs {

    lower_dirs[];  // 只读层

    upper_dir;    // 读写层

    work_dir;      // 工作目录

};

```

### Docker架构全景

```

Docker架构组成:

├── 客户端/服务端模型

│  ├── Docker Client (CLI)

│  ├── Docker Daemon (dockerd)

│  └── REST API 接口

├── 核心组件层

│  ├── containerd (容器运行时)

│  ├── runc (OCI运行时)

│  └── shim (生命周期管理)

├── 镜像管理层

│  ├── Registry (镜像仓库)

│  ├── Image (镜像)

│  └── Layer (存储层)

└── 网络存储层

    ├── CNI (容器网络)

    ├── CSI (容器存储)

    └── 插件生态系统

```

## 二、容器镜像深度解析

### 镜像分层与联合文件系统

```dockerfile

# Dockerfile 构建过程示例

# 基础层: Alpine Linux

FROM alpine:3.18 AS base

LABEL maintainer="dev@example.com"

# ↓ 创建只读层: sha256:a123...

# 应用层: 安装Python

RUN apk add --no-cache python3 py3-pip

# ↓ 创建只读层: sha256:b456...

# 配置层: 设置工作目录

WORKDIR /app

COPY requirements.txt .

# ↓ 创建只读层: sha256:c789...

# 依赖层: 安装Python包

RUN pip install --no-cache-dir -r requirements.txt

# ↓ 创建只读层: sha256:d012...

# 应用代码层

COPY . .

# ↓ 创建只读层: sha256:e345...

# 入口点层

ENTRYPOINT ["python3", "app.py"]

# ↓ 创建镜像: myapp:latest

```

### 镜像构建优化实践

```bash

# 查看镜像分层信息

docker image history myapp:latest

# 输出示例:

# IMAGE          CREATED        CREATED BY                                      SIZE

# e345...        2 hours ago    /bin/sh -c #(nop)  ENTRYPOINT ["python3" "a…  0B

# d012...        2 hours ago    /bin/sh -c pip install --no-cache-dir -r re…  15.2MB

# c789...        2 hours ago    /bin/sh -c #(nop) COPY file:abc123...          156B

# b456...        3 hours ago    /bin/sh -c apk add --no-cache python3 py3-p…  89.1MB

# a123...        4 weeks ago    /bin/sh -c #(nop) ADD file:xyz789 in /        7.05MB

# 分析镜像大小

docker image inspect myapp:latest --format='{{.Size}}'

# 导出镜像为tar文件查看层内容

docker save myapp:latest -o myapp.tar

tar -tf myapp.tar | grep layer.tar

```

### 镜像构建缓存机制

```python

# 理解Docker构建缓存

import hashlib

import json

class DockerBuildCache:

    def __init__(self):

        self.layer_cache = {}


    def calculate_layer_hash(self, instruction, context_files):

        """计算Docker层哈希"""

        # 1. 指令本身

        instruction_data = instruction.encode('utf-8')


        # 2. 父层哈希

        parent_hash = self.get_parent_hash()


        # 3. 上下文文件内容

        file_hashes = []

        for file_pattern in context_files:

            for file_path in self.glob_files(file_pattern):

                with open(file_path, 'rb') as f:

                    file_hash = hashlib.sha256(f.read()).hexdigest()

                    file_hashes.append(file_hash)


        # 组合所有元素计算最终哈希

        combined = instruction_data + parent_hash.encode()

        for fh in file_hashes:

            combined += fh.encode()


        return hashlib.sha256(combined).hexdigest()[:12]


    def is_cache_valid(self, layer_hash):

        """检查缓存是否有效"""

        return layer_hash in self.layer_cache

```

## 三、容器运行时核心技术

### containerd架构解析

```go

// containerd 简化架构示意

package main

import (

    "context"

    "github.com/containerd/containerd"

    "github.com/containerd/containerd/namespaces"

)

type ContainerRuntime struct {

    client *containerd.Client

    ctx    context.Context

}

func NewRuntime() (*ContainerRuntime, error) {

    // 连接containerd守护进程

    client, err := containerd.New("/run/containerd/containerd.sock")

    if err != nil {

        return nil, err

    }


    ctx := namespaces.WithNamespace(context.Background(), "default")


    return &ContainerRuntime{

        client: client,

        ctx:    ctx,

    }, nil

}

func (r *ContainerRuntime) CreateContainer(config ContainerConfig) error {

    // 1. 拉取镜像

    image, err := r.client.Pull(r.ctx, config.Image)

    if err != nil {

        return err

    }


    // 2. 创建容器

    container, err := r.client.NewContainer(

        r.ctx,

        config.Name,

        containerd.WithImage(image),

        containerd.WithRuntime("io.containerd.runc.v2", nil),

        containerd.WithNewSpec(config.Spec),

    )

    if err != nil {

        return err

    }


    // 3. 创建任务(实际进程)

    task, err := container.NewTask(r.ctx, cio.NewCreator(cio.WithStdio))

    if err != nil {

        return err

    }


    // 4. 启动任务

    return task.Start(r.ctx)

}

```

### runc容器运行时

```bash

# 使用runc直接创建容器的示例

# 1. 创建OCI bundle

mkdir -p mycontainer/rootfs

docker export $(docker create alpine) | tar -C mycontainer/rootfs -x

# 2. 创建配置文件

cat > mycontainer/config.json << 'EOF'

{

    "ociVersion": "1.0.2",

    "process": {

        "terminal": true,

        "user": {"uid": 0, "gid": 0},

        "args": ["/bin/sh"],

        "env": ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],

        "cwd": "/"

    },

    "root": {

        "path": "rootfs",

        "readonly": false

    },

    "hostname": "mycontainer",

    "mounts": [

        {

            "destination": "/proc",

            "type": "proc",

            "source": "proc"

        },

        {

            "destination": "/dev",

            "type": "tmpfs",

            "source": "tmpfs",

            "options": ["nosuid","strictatime","mode=755","size=65536k"]

        }

    ],

    "linux": {

        "namespaces": [

            {"type": "pid"},

            {"type": "network"},

            {"type": "ipc"},

            {"type": "uts"},

            {"type": "mount"}

        ]

    }

}

EOF

# 3. 运行容器

runc run mycontainer

```

## 四、容器网络模型深度解析

### 网络命名空间原理

```c

// 网络命名空间创建与配置

#include <sched.h>

#include <stdio.h>

#include <stdlib.h>

int create_network_namespace() {

    // 创建新的网络命名空间

    if (unshare(CLONE_NEWNET) < 0) {

        perror("unshare");

        return -1;

    }


    // 此时已在新的网络命名空间中

    // 配置虚拟网络设备

    system("ip link set lo up");


    // 创建veth pair连接不同命名空间

    // ip link add veth0 type veth peer name veth1


    return 0;

}

```

### Docker网络驱动实现

```go

// Docker网络驱动接口示例

package network

import (

    "net"

    "github.com/docker/libnetwork/driverapi"

)

type BridgeDriver struct {

    driverapi.Driver

}

func (d *BridgeDriver) CreateNetwork(nid string, options map[string]interface{}) error {

    // 创建网桥

    bridgeName := "br-" + nid[:12]


    // 配置IP地址

    subnet := options["subnet"].(string)

    ip, ipnet, _ := net.ParseCIDR(subnet)


    // 设置网桥IP

    // ip link add name bridgeName type bridge

    // ip addr add ip dev bridgeName

    // ip link set bridgeName up


    // 配置iptables规则

    // iptables -t nat -A POSTROUTING -s subnet -j MASQUERADE


    return nil

}

func (d *BridgeDriver) CreateEndpoint(nid, eid string, options map[string]interface{}) error {

    // 创建veth pair

    // ip link add veth-host type veth peer name veth-container


    // 将veth-host连接到网桥

    // ip link set veth-host master bridgeName


    // 配置容器端网络

    return nil

}

```

### 多容器网络通信

```yaml

# docker-compose.yml 网络配置示例

version: '3.8'

services:

  web:

    build: .

    ports:

      - "8080:80"

    networks:

      - frontend

      - backend

    depends_on:

      - database

  api:

    build: ./api

    networks:

      - backend

  database:

    image: postgres:15

    environment:

      POSTGRES_PASSWORD: example

    volumes:

      - db_data:/var/lib/postgresql/data

    networks:

      - backend

      - monitoring

  prometheus:

    image: prom/prometheus

    volumes:

      - ./prometheus.yml:/etc/prometheus/prometheus.yml

    networks:

      - monitoring

networks:

  frontend:

    driver: bridge

    ipam:

      config:

        - subnet: 172.20.0.0/16

  backend:

    driver: bridge

    ipam:

      config:

        - subnet: 172.21.0.0/16

  monitoring:

    driver: overlay  # 跨主机网络

    attachable: true

volumes:

  db_data:

```

## 五、容器存储系统详解

### 存储驱动工作原理

```python

# 存储驱动抽象示例

from abc import ABC, abstractmethod

from typing import List, Optional

class StorageDriver(ABC):

    """存储驱动抽象基类"""


    @abstractmethod

    def create_layer(self, parent: Optional[str], diff_id: str) -> str:

        """创建新的存储层"""

        pass


    @abstractmethod

    def mount_layer(self, layer_id: str, mount_path: str) -> bool:

        """挂载存储层"""

        pass


    @abstractmethod

    def remove_layer(self, layer_id: str) -> bool:

        """移除存储层"""

        pass

class Overlay2Driver(StorageDriver):

    """Overlay2存储驱动实现"""


    def __init__(self, root_dir: str = "/var/lib/docker/overlay2"):

        self.root_dir = root_dir

        self.work_dir = f"{root_dir}/work"

        self.merged_dir = f"{root_dir}/merged"


    def create_layer(self, parent: Optional[str], diff_id: str) -> str:

        """创建Overlay2层"""

        import os

        import uuid


        # 创建唯一层ID

        layer_id = f"{diff_id[:12]}-{uuid.uuid4().hex[:8]}"

        layer_path = f"{self.root_dir}/{layer_id}"


        # 创建必要的目录结构

        os.makedirs(f"{layer_path}/diff", exist_ok=True)

        os.makedirs(f"{layer_path}/work", exist_ok=True)


        # 写入层元数据

        metadata = {

            "id": layer_id,

            "parent": parent,

            "created": datetime.now().isoformat(),

            "diff_id": diff_id

        }


        import json

        with open(f"{layer_path}/metadata.json", "w") as f:

            json.dump(metadata, f)


        return layer_id


    def mount_layer(self, layer_id: str, mount_path: str) -> bool:

        """挂载Overlay2文件系统"""

        import subprocess


        # 构建挂载参数

        lower_dirs = self._get_lower_dirs(layer_id)

        upper_dir = f"{self.root_dir}/{layer_id}/diff"

        work_dir = f"{self.root_dir}/{layer_id}/work"


        # 执行挂载命令

        cmd = [

            "mount", "-t", "overlay", "overlay",

            "-o", f"lowerdir={':'.join(lower_dirs)},upperdir={upper_dir},workdir={work_dir}",

            mount_path

        ]


        result = subprocess.run(cmd, capture_output=True)

        return result.returncode == 0


    def _get_lower_dirs(self, layer_id: str) -> List[str]:

        """获取所有下层目录"""

        layers = []

        current = layer_id


        while current:

            layers.append(f"{self.root_dir}/{current}/diff")

            # 获取父层

            metadata_path = f"{self.root_dir}/{current}/metadata.json"

            if os.path.exists(metadata_path):

                import json

                with open(metadata_path, "r") as f:

                    metadata = json.load(f)

                    current = metadata.get("parent")

            else:

                current = None


        return list(reversed(layers))

```

### 数据卷管理

```bash

# 数据卷操作示例

# 1. 创建命名卷

docker volume create app_data

# 2. 查看卷信息

docker volume inspect app_data

# 输出:

# [

#    {

#        "CreatedAt": "2024-01-15T10:30:00Z",

#        "Driver": "local",

#        "Labels": {},

#        "Mountpoint": "/var/lib/docker/volumes/app_data/_data",

#        "Name": "app_data",

#        "Options": {},

#        "Scope": "local"

#    }

# ]

# 3. 使用卷运行容器

docker run -d \

  --name mysql \

  -v app_data:/var/lib/mysql \

  -e MYSQL_ROOT_PASSWORD=secret \

  mysql:8.0

# 4. 备份卷数据

docker run --rm \

  -v app_data:/source \

  -v $(pwd):/backup \

  alpine tar czf /backup/mysql-backup.tar.gz -C /source .

# 5. 卷数据迁移

docker volume create new_app_data

docker run --rm \

  -v app_data:/source \

  -v new_app_data:/dest \

  alpine sh -c "cp -a /source/* /dest/"

# 6. 清理未使用的卷

docker volume prune -f

```

## 六、容器生命周期管理

### 容器状态机与生命周期

```go

// 容器状态管理

package lifecycle

type ContainerState string

const (

    StateCreated    ContainerState = "created"

    StateRunning    ContainerState = "running"

    StatePaused    ContainerState = "paused"

    StateRestarting ContainerState = "restarting"

    StateRemoving  ContainerState = "removing"

    StateExited    ContainerState = "exited"

    StateDead      ContainerState = "dead"

)

type Container struct {

    ID        string

    State    ContainerState

    Status    string

    Created  time.Time

    StartedAt time.Time

    FinishedAt time.Time

    ExitCode  int

    PID      int

}

type LifecycleManager struct {

    containers map[string]*Container

    mu        sync.RWMutex

}

func (lm *LifecycleManager) Transition(containerID string, from, to ContainerState) error {

    lm.mu.Lock()

    defer lm.mu.Unlock()


    container, exists := lm.containers[containerID]

    if !exists {

        return fmt.Errorf("container %s not found", containerID)

    }


    // 验证状态转换是否允许

    if !lm.isValidTransition(container.State, to) {

        return fmt.Errorf("invalid transition from %s to %s", container.State, to)

    }


    // 执行状态转换

    container.State = to

    container.UpdatedAt = time.Now()


    // 触发状态转换钩子

    lm.executeHooks(container, from, to)


    return nil

}

func (lm *LifecycleManager) isValidTransition(from, to ContainerState) bool {

    transitions := map[ContainerState][]ContainerState{

        StateCreated:    {StateRunning, StateExited, StateDead},

        StateRunning:    {StatePaused, StateRestarting, StateExited, StateDead},

        StatePaused:    {StateRunning, StateExited, StateDead},

        StateRestarting: {StateRunning, StateExited},

        StateExited:    {StateRunning, StateRemoving, StateDead},

        StateDead:      {},

    }


    allowed, exists := transitions[from]

    if !exists {

        return false

    }


    for _, state := range allowed {

        if state == to {

            return true

        }

    }


    return false

}

```

### 健康检查与自愈机制

```yaml

# Docker Compose健康检查配置

version: '3.8'

services:

  web:

    build: .

    ports:

      - "8080:80"

    healthcheck:

      test: ["CMD", "curl", "-f", "http://localhost/health"]

      interval: 30s

      timeout: 10s

      retries: 3

      start_period: 40s

    deploy:

      replicas: 3

      restart_policy:

        condition: on-failure

        max_attempts: 3

        window: 120s

  database:

    image: postgres:15

    environment:

      POSTGRES_PASSWORD: example

    healthcheck:

      test: ["CMD-SHELL", "pg_isready -U postgres"]

      interval: 10s

      timeout: 5s

      retries: 5

    volumes:MX.P8H.HK|9B.E2C.HK|2T.W4E.HK|LD.E8P.HK

      - db_data:/var/lib/postgresql/data

```

```bash

# 容器健康状态监控脚本

#!/bin/bash

CONTAINER_NAME="web_app"

HEALTH_CHECK_INTERVAL=30

MAX_RETRIES=3

check_container_health() {

    local container_id=$1

    local health_status


    health_status=$(docker inspect --format='{{.State.Health.Status}}' "$container_id" 2>/dev/null)


    case $health_status in

        "healthy")

            echo "Container $container_id is healthy"

            return 0

            ;;

        "unhealthy")

            echo "Container $container_id is unhealthy"

            return 1

            ;;

        "starting")

            echo "Container $container_id is starting"

            return 2

            ;;

        *)

            echo "Container $container_id status: $health_status"

            return 3

            ;;

    esac

}

restart_container() {

    local container_id=$1


    echo "Restarting container $container_id"

    docker restart "$container_id"


    # 等待容器启动

    sleep 10


    # 检查重启后状态

    check_container_health "$container_id"

    return $?

}

monitor_container() {

    local container_id

    local retry_count=0


    container_id=$(docker ps -q --filter "name=$CONTAINER_NAME")


    if [ -z "$container_id" ]; then

        echo "Container $CONTAINER_NAME not found"

        return 1

    fi


    while true; do

        check_container_health "$container_id"

        local health_status=$?


        if [ $health_status -eq 1 ]; then

            # 容器不健康,尝试重启

            retry_count=$((retry_count + 1))


            if [ $retry_count -ge $MAX_RETRIES ]; then

                echo "Container $container_id failed health check after $MAX_RETRIES retries"


                # 执行故障转移或报警

                trigger_failover "$container_id"

                retry_count=0

            else

                restart_container "$container_id"

            fi

        else

            retry_count=0

        fi


        sleep $HEALTH_CHECK_INTERVAL


        # 更新容器ID(防止容器重启后ID变化)

        container_id=$(docker ps -q --filter "name=$CONTAINER_NAME")

    done

}

trigger_failover() {

    local failed_container=$1


    echo "Triggering failover for container $failed_container"


    # 1. 标记故障节点

    docker node update --availability drain "$(docker inspect --format='{{.Node.ID}}' "$failed_container")"


    # 2. 在新节点上启动服务

    docker service scale "$CONTAINER_NAME"=3


    # 3. 清理故障容器

    docker rm -f "$failed_container"


    echo "Failover completed"

}

# 启动监控

monitor_container

```

## 七、容器编排与集群管理

### Docker Swarm集群部署

```bash

#!/bin/bash

# swarm-cluster-setup.sh

set -e

echo "=== Docker Swarm集群部署 ==="

# 1. 初始化Swarm集群

init_swarm() {

    local manager_ip=$1


    echo "在管理节点初始化Swarm集群..."

    docker swarm init --advertise-addr "$manager_ip"


    # 获取加入令牌

    MANAGER_TOKEN=$(docker swarm join-token manager -q)

    WORKER_TOKEN=$(docker swarm join-token worker -q)


    echo "管理节点令牌: $MANAGER_TOKEN"

    echo "工作节点令牌: $WORKER_TOKEN"


    # 保存令牌到文件

    echo "$MANAGER_TOKEN" > /tmp/swarm-manager.token

    echo "$WORKER_TOKEN" > /tmp/swarm-worker.token

}

# 2. 加入工作节点

join_swarm() {

    local manager_ip=$1

    local token=$2


    echo "将节点加入Swarm集群..."

    docker swarm join --token "$token" "$manager_ip":2377

}

# 3. 部署堆栈服务

deploy_stack() {

    local stack_name=$1

    local compose_file=$2


    echo "部署堆栈: $stack_name"

    docker stack deploy -c "$compose_file" "$stack_name"


    # 检查服务状态

    echo "服务状态:"

    docker service ls


    echo "服务详情:"

    for service in $(docker stack services -q "$stack_name"); do

        echo "Service: $service"

        docker service ps "$service"

    done

}

# 4. 集群维护操作

maintain_cluster() {

    # 节点维护模式

    echo "将节点设置为维护模式..."

    docker node update --availability drain "$(docker node ls -q | head -1)"


    # 服务更新

    echo "滚动更新服务..."

    docker service update --image myapp:2.0.0 web_app


    # 查看更新进度

    watch -n 1 'docker service ps web_app | grep -E "Running|Shutdown"'

}

# 5. 集群监控

monitor_cluster() {

    # 集群状态

    echo "=== 集群状态 ==="

    docker node ls


    # 服务状态

    echo -e "\n=== 服务状态 ==="

    docker service ls


    # 网络状态

    echo -e "\n=== 网络状态 ==="

    docker network ls


    # 卷状态

    echo -e "\n=== 存储卷状态 ==="

    docker volume ls


    # 系统资源使用

    echo -e "\n=== 节点资源使用 ==="

    docker stats --no-stream

}

# 主函数

main() {

    local operation=$1

    local manager_ip=$2


    case $operation in

        "init")

            init_swarm "$manager_ip"

            ;;

        "join-worker")

            join_swarm "$manager_ip" "$(cat /tmp/swarm-worker.token)"

            ;;

        "join-manager")

            join_swarm "$manager_ip" "$(cat /tmp/swarm-manager.token)"

            ;;

        "deploy")

            deploy_stack "production" "docker-compose.yml"

            ;;

        "maintain")

            maintain_cluster

            ;;

        "monitor")

            monitor_cluster

            ;;

        *)

            echo "用法: $0 {init|join-worker|join-manager|deploy|maintain|monitor} [manager-ip]"

            exit 1

            ;;

    esac

}

# 执行主函数

main "$@"

```

### 容器编排最佳实践

```yaml

# production-stack.yml

version: '3.8'

services:

  reverse_proxy:

    image: nginx:alpine

    ports:

      - "80:80"

      - "443:443"

    volumes:

      - ./nginx.conf:/etc/nginx/nginx.conf:ro

      - ./ssl:/etc/nginx/ssl:ro

    networks:

      - public

    deploy:

      mode: global

      placement:

        constraints:

          - node.role == manager

      update_config:

        parallelism: 1

        order: start-first

        delay: 30s

        failure_action: rollback

      rollback_config:

        parallelism: 0

        order: stop-first

      restart_policy:

        condition: any

        delay: 5s

        max_attempts: 3

        window: 120s

      resources:

        limits:

          cpus: '0.5'

          memory: 512M

        reservations:

          cpus: '0.25'

          memory: 256M

  application:

    image: myapp:${APP_VERSION:-latest}

    environment:

      - DATABASE_URL=postgres://user:pass@database:5432/db

      - REDIS_URL=redis://redis:6379/0

      - APP_ENV=production

    secrets:

      - database_password

    configs:

      - source: app_config

        target: /app/config.yml

    networks:

      - public

      - private

    deploy:

      mode: replicated

      replicas: 3

      endpoint_mode: vip

      update_config:

        parallelism: 2

        delay: 10s

      healthcheck:

        test: ["CMD", "curl", "-f", "http://localhost:8080/health"]

        interval: 30s

        timeout: 10s

        retries: 3

        start_period: 40s

  database:

    image: postgres:15-alpine

    environment:

      POSTGRES_USER: ${DB_USER}

      POSTGRES_DB: ${DB_NAME}

    secrets:

      - source: database_password

        target: /run/secrets/postgres_password

    volumes:

      - postgres_data:/var/lib/postgresql/data

    networks:

      - private

    deploy:

      mode: replicated

      replicas: 1

      placement:

        constraints:

          - node.labels.db == true

      resources:

        limits:

          memory: 2G

        reservations:

          memory: 1G

  redis:

    image: redis:7-alpine

    command: redis-server --requirepass ${REDIS_PASSWORD}

    volumes:

      - redis_data:/data

    networks:

      - private

    deploy:

      mode: replicated

      replicas: 2

networks:

  public:

    driver: overlay

    attachable: true

  private:

    driver: overlay

    internal: true

volumes:

  postgres_data:

    driver: local

  redis_data:

    driver: local

secrets:

  database_password:

    external: true

configs:

  app_config:

    external: true

```

通过以上深度解析,我们全面探讨了Docker容器技术的核心原理、架构设计和生命周期管理。从Linux内核的命名空间、cgroups机制,到Docker的镜像分层、存储驱动,再到容器编排和集群管理,每个层面都展示了容器技术的精妙设计。理解这些底层原理不仅有助于更有效地使用Docker,还能为构建可靠、高效的容器化应用提供坚实的技术基础。

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容