背景介绍
是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。 ----- 来自 wikipedia
算法规则
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
1.从第一个元素开始,该元素可以认为已经被排序
2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置将
5. 新元素插入到该位置后
6.重复步骤2~5
复杂度
插入排序当中有两个循环,假设数组的大小为n,则第一个循环是n-1次,第二个while循环在最坏的情况下是1到n-1次。因此插入排序的时间复杂度大约为如下形式:
1+2+3+4+...+n-1 = n(n-1)/ 2 = O(n2),时间复杂度为输入规模的2次函数,可见插入排序的时间复杂度是比较高的。这是原理上的简单分析,最后在“算林大会”中,各位可以清楚的看到插入排序随着输入规模的增长,时间会指数倍的上升。
代码实现(Java版本)