Hive执行原理

Hive执行原理

MapReduce简化大数据编程难度,但对经常需大数据计算的人,如从事研究BI的数据分析师通常使用SQL进行大数据分析和统计,MapReduce编程有门槛。且若每次统计和分析都开发相应MapReduce程序,成本确实太高。

是否可直接将SQL运行在大数据平台?如何用MapReduce实现SQL数据分析。

1 MapReduce实现SQL的原理

常见的一条SQL分析语句,MapReduce如何编程实现?

# 统计分析语句
SELECT pageid, age, count(1) 
FROM pv_users
GROUP BY pageid, age;

统计不同年龄用户访问不同网页的兴趣偏好:

  • 左边,要分析的数据表
  • 右边,分析结果

把左表相同的行求和,即得右表,类似WordCount。该SQL的MapReduce的计算过程,按MapReduce编程模型

  • map函数的输入K和V,主要看V

    V就是左表中每行的数据,如<1, 25>

  • map函数的输出就是以输入的V作为K,V统一设为1

    比如<<1, 25>, 1>

map函数的输出shuffle后,相同K及对应V放在一起,组成一个<K, V集合>,作为输入交给reduce函数处理。如<<2, 25>, 1>被map函数输出两次,到reduce就变成输入<<2, 25>, <1, 1>>:

  • K=<2, 25>
  • V集合=<1, 1>

在reduce函数内部,V集合里所有的数字被相加,然后输出。所以reduce输出就是<<2, 25>, 2>

如此,一条SQL就被MapReduce计算完成。

数仓中,SQL是最常用的分析工具,既然一条SQL可通过MapReduce程序实现,那有无工具能自动将SQL生成MapReduce代码?这样数据分析师只要输入SQL,即可自动生成MapReduce可执行的代码,然后提交Hadoop执行。这就是Hadoop大数据仓库Hive。

2 Hive架构

Hive能直接处理我们输的SQL,调用MapReduce计算框架完成数据分析操作。

通过Hive Client向Hive Server提交SQL命令:

  • DDL,Hive会通过执行引擎Driver将数据表的信息记录在Metastore元数据组件,该组件通常用一个关系DB实现,记录表名、字段名、字段类型、关联HDFS文件路径等这些数据库的元信息
  • DQL,Driver会将该语句提交给自己的编译器Compiler进行语法分析、语法解析、语法优化,最后生成一个MapReduce执行计划。然后根据执行计划生成一个MapReduce的作业,提交给Hadoop MapReduce计算框架处理

对简单SQL:

SELECT * FROM status_updates WHERE status LIKE 'michael jackson';

对应的Hive执行计划:

Hive内部预置很多函数,Hive执行计划就是根据SQL语句生成这些函数的DAG,然后封装进MapReduce的map、reduce函数。该案例中的map函数调用三个Hive内置函数就完成map计算,且无需reduce。

Hive join操作

除简单的聚合(group by)、过滤(where),Hive还能执行连接(join on)。

pv_users表的数据无法直接得到,因为pageid来自用户访问日志,每个用户进行一次页面浏览,就会生成一条访问记录,保存在page_view表。而age年龄信息记录在表user。

这两张表有相同字段userid,可连接两张表,生成pv_users表:

SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.userid = u.userid);

该SQL命令也能转化为MapReduce计算,连接过程:

join的MapReduce计算过程和group by稍不同,因为join涉及两张表,来自两个文件(夹),所以要在map输出时进行标记,如来自第一张表的输出Value就记为<1, X>,这1表示数据来自第一张表。shuffle后,相同Key被输入到同一reduce函数,就可根据表的标记对Value数据求笛卡尔积,用第一张表的每条记录和第二张表的每条记录连接,输出即join结果。

所以打开Hive源码,看join代码,会看到一个两层for循环,对来自两张表的记录进行连接操作。

功能

SQL:命令行、代码

多语言Apache Thrift驱动

自定义的UDF函数:按照标准接口实现,打包,加载到Hive

小结

SQL转换成一系列可以在Hadoop上运行的MapReduce/Tez/Spark作业。

SOL到底底层是运行在哪种分布式引擎之上的,是可以通过一个参数来设置。

总结

开发无需经常编写MapReduce程序,因为网站最主要的大数据处理就是SQL分析,因此Hive很重要。

随Hive普及,我们对在Hadoop执行SQL的需求越强,对大数据SQL的应用场景也多样化起来,于是又开发各种大数据SQL引擎。

Cloudera开发Impala,运行在HDFS上的MPP架构的SQL引擎。和MapReduce启动Map、Reduce两种执行进程,将计算过程分成两个阶段进行计算不同,Impala在所有DataNode服务器上部署相同的Impalad进程,多个Impalad进程相互协作,共同完成SQL计算。

Spark也推出自己的SQL引擎Spark SQL,将SQL语句解析成Spark执行计划,在Spark执行。由于Spark比MapReduce快很多,Spark SQL也比Hive快很多,随Spark普及,Spark SQL也逐渐被接受。后来Hive推出Hive on Spark,将Hive的执行计划直接转换成Spark的计算模型。

还希望在NoSQL执行SQL,毕竟SQL发展几十年,积累庞大用户,很多人习惯用SQL解决问题。于是Saleforce推出Phoenix,一个执行在HBase上的SQL引擎。

这些SQL引擎只支持类SQL语法,不像DB支持标准SQL,特别是数仓几乎必用嵌套查询SQL:在where条件里嵌套select子查询,但几乎所有大数据SQL引擎都不支持。

Hive技术架构没啥创新,数据库相关技术架构已很成熟,只要将这些技术架构应用到MapReduce就得到Hadoop大数据仓库Hive。但想到将两种技术嫁接,却极具创新性,通过嫁接产生出的Hive极大降低大数据应用门槛,也使Hadoop普及。

参考

获取更多干货内容,记得关注我哦。

本文由博客一文多发平台 OpenWrite 发布!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容