数据结构(十):最小生成树

最小生成树是带权无向连通图中权值最小的生成树,根据中生成树定义可知,|V| 个顶点的连通图中,生成树中边的个数为 |V|-1,向生成树中添加任意一条边,则会形成环。生成树存在多种,其中权值之和最小的生成树即为最小生成树。

最小生成树保证最小权值是固定的,但是最小生成树可能有多个。

A 为最小生成树 MST 的一个真子集,即 A 的顶点集合和边集合都是 MST 的顶点和边集合的子集,构造最小生成树过程为向 A 中添加顶点和边,添加的原则有两种:

  1. 选择 A 的边集合外,权值最小的边,加入到 A

添加边的过程需要避免形成环。

  1. 选择 A 的顶点集合外,距离 A 最近的顶点,加入到 A

距离 A 最近的点,即和 A 中的顶点形成最小权值边的非 A 中的某个顶点。

kruskal 算法

kruskal 算法即为上述第一种原则,通过选择图中的最小权值边来构造最小生成树,过程中需要注意避免形成环。

算法过程
  1. 对边集合进行排序
  2. 选择最小权值边,若不构成环,则添加到集合 A
  3. 重复执行步骤 2,直到添加 |V|-1 条边
演示示例
graph

step 1:
最小权值边为顶点 7、8 形成的边

step 2:
最小权值边为顶点 3、9 形成的边

step 3:
最小权值边为顶点 6、7 形成的边

step 4:
最小权值边为顶点 3、6 形成的边

step 5:
最小权值边为顶点 1、2 形成的边

step 6:
最小权值边为顶点 3、4 形成的边

step 7:
最小权值边为顶点 1、8 形成的边

step 8:
最小权值边为顶点 4、5 形成的边

最小生成树的权值之和为 37

算法示例

这里使用邻接表作为图的存储结构

  1. kruskal 算法示例
def kruskal(graph):
    edges, vertices = getEdgesFromAdjacencyList(graph), [i for i in range(graph.number)]
    sort(edges, 0, len(edges) - 1)
    weightSum, edgeNumber = 0, 0
    while edgeNumber < graph.number - 1:
        edge = edges.pop()
        beginOrigin, endOrigin = origin(vertices, edge.begin - 1), origin(vertices, edge.end - 1)
        if (beginOrigin != endOrigin): # whether the two vertices belong to same graph
            vertices[beginOrigin] = endOrigin  # identify the two vertices in the same sub graph
            weightSum, edgeNumber = weightSum + edge.weight, edgeNumber + 1  # calculate the total weight

这里使用 getEdgesFromAdjacencyList 函数完成邻接表到边集合的转换,使用快排 sort 完成对边集合的排序,使用 origin 函数返回每个子图的根。

kruskal 算法设定最初每个顶点都是一个子图,每个子图都有一个根,或者称之为出发点,每个加入的顶点都保留一个指向上一个顶点的引用,并最终追溯到该子图的根顶点,所以可以通过判断两个顶点指向的根顶点是否相同,来判断两顶点是否属于同一个子图。

  1. 邻接表转边集合
def getEdgesFromAdjacencyList(graph):
    edges = []
    for i in range(graph.number):
        node = graph.list[i]
        while node:
            edge, node = Edge(i + 1, node.index, node.weight), node.next
            edges.append(edge)
    return edges

因为使用邻接表向边进行转化,且后续只对边集合进行处理,所以在测试时候,无向图中的每条边,只需要记录一次即可,不需要对于边的两个顶点,分别记录一次。

  1. 判断两个顶点是否属于同一个子图,避免添加边后形成环
def origin(vertices, index):
    while vertices[index] != index:
        index = vertices[index]
    return index

该函数返回顶点 index 所属子图的根顶点,其中 vertices[index] 位置上存储的是顶点 index 的上一个顶点,每个子图中,根顶点的上一个顶点为自身。

性能分析

kruskal 算法中使用 getEdgesFromAdjacencyList 函数完成邻接表向边集合的转换,函数内部存在两层循环,访问邻接表中每个顶点的相邻顶点,复杂度为 O(log|E|)。使用快排对边集合进行排序,时间复杂度为 O(|E|log |E|),因为 |E| \lt |V|^2,所以快排时间复杂度可以表述为 O(|E|log |V|)kruskal 算法中 while 循环取最小权值边,并对边的两个顶点执行 origin 函数判断是否属于同一个子图,时间复杂度为 O(|E|log |V|)。所以 kruskal 算法的时间复杂度为 O(|E|log |V|)

prim 算法

kruskal 算法的过程为不断对子图进行合并,直到形成最终的最小生成树。prim 算法的过程则是只存在一个子图,不断选择顶点加入到该子图中,即通过对子图进行扩张,直到形成最终的最小生成树。

扩张过程中选择的顶点,是距离子图最近的顶点,即与子图中顶点形成的边是权值最小的边。

算法过程
  1. 按照距离子图的远近,对顶点集合进行排序
  2. 选择最近的顶点加入到子图中,并更新相邻顶点对子图的距离
  3. 重复执行步骤 2,直到顶点集合为空
演示示例
graph

这里不妨以顶点 5 作为子图中的第一个顶点

step 1:
距离子图的最近顶点为 4

step 2:
距离子图的最近顶点为 3

step 3:
距离子图的最近顶点为 9

step 4:
距离子图的最近顶点为 6

step 5:
距离子图的最近顶点为 7

step 6:
距离子图的最近顶点为 8

step 7:
距离子图的最近顶点为 2

step 8:
距离子图的最近顶点为 1

最小生成树的权值之和为 37

算法示例

这里使用邻接表作为图的存储结构

  1. prim 算法示例
def prim(graph, index):
    vertices, verticesIndex = [{'index': i, 'weight': None} for i in range(graph.number)], [i for i in range(graph.number)]
    weightSum, vertices[index - 1]['weight'] = 0, 0
    heapSort(vertices, verticesIndex)
    while len(vertices) > 0:
        swapVertices(vertices, verticesIndex, 0, -1)
        vertex = vertices.pop()
        transformToHeap(vertices, verticesIndex, 0, len(vertices))
        weightSum = weightSum + vertex['weight']
        updateVertices(graph, vertices, verticesIndex, vertex['index'])

这里使用 vertices 列表存储每个顶点元素,每个元素包括两个属性,index 为顶点下标,weight 为顶点距离子图的大小。算法中使用 verticesIndex 列表存储每个顶点元素在 vertices 列表中的下标位置。使用 heapSort 堆排序对每个顶点到子图的距离进行排序,即对 vertices 列表进行排序,使用堆排序内的 transformToHeap 函数调整 vertices 列表为小顶堆。当添加新顶点到子图后,使用 updateVertices 函数完成对相邻顶点的距离更新。

因为对 vertices 列表排序后,每个顶点元素在 vertices 列表的下标值不能表示该顶点的编号,而后续添加新顶点后,在更新相邻顶点距离的操作中,为了避免查找相邻顶点而遍历整个列表,需要根据顶点编号进行直接访问相邻顶点,所以借助 verticesIndex 列表存储每个顶点元素在 vertices 列表中的位置。例如要更新顶点 v 的距离,则 verticesIndex[v] 值为顶点 vvertices 列表中的位置,v 顶点元素即为 vertices[verticesIndex[v]]

  1. 交换列表首尾元素
def swapVertices(vertices, verticesIndex, origin, target):
    vertices[origin], vertices[target] = vertices[target], vertices[origin]
    verticesIndex[vertices[origin]['index']], verticesIndex[vertices[target]['index']] = origin, target

vertices 列表调整为小顶堆之后,将列表首、尾元素交换,则列表尾元素即为距离子图最近的顶点元素。

  1. 添加顶点到子图中后,更新相邻顶点到子图的距离
def updateVertices(graph, vertices, verticesIndex, index):
    node = graph.list[index]
    while node:
        if verticesIndex[node.index - 1] == -1:
            node = node.next
            continue
        vertex = vertices[verticesIndex[node.index - 1]]
        if not vertex['weight'] or vertex['weight'] > node.weight:
            vertex['weight'] = node.weight
            pos = verticesIndex[vertex['index']]
            while pos > 0 and (not vertices[(pos - 1) // 2]['weight'] or vertices[pos]['weight'] < vertices[(pos - 1) // 2]['weight']):
                swapVertices(vertices, verticesIndex, pos, (pos - 1) // 2)
                pos = (pos - 1) // 2
        node = node.next

对每一个相邻顶点,如果不在子图中,则判断是否更新到子图的距离。更新距离后的 while 循环操作,目的为调整堆结构为小顶堆。

性能分析

prim 算法中构造顶点列表的时间复杂度为 O(|V|)。使用堆排序对顶点列表进行排序,时间复杂度为 O(|V|log |V|)prim 算法中 while 循环取最近顶点元素,并调整元素取出后列表的堆结构,所以调整复杂度为 O(|V|log |V|);同时,循环结构内执行 updateVertices 函数,更新每个取出顶点的相邻顶点距离值,所以更新顶点数为 O(|E|),因为每个顶点更新距离后,需要调整堆结构为小顶堆,所以更新复杂度为 O(|E|log |V|)。所以prim 算法的总时间复杂度为 O(|E|log |V|)

代码及测试 github 链接:最小生成树

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容