一篇文章让你玩转高性能下的RocketMQ消息中间件!(附资料分享)

RocketMQ高性能优化探索

本章节简单介绍下在优化RocketMQ过程中用到的方法和技巧。部分方法在消息领域提升不明显却带来了编码和运维的复杂度,这类方法虽然最终没有利用起来,也在下面做了介绍供大家参考。

Java篇

在接触到内核层面的性能优化之前,Java层面的优化需要先做起来。有时候灵机一动的优化方法需要实现Java程序来进行测试,注意测试的时候需要在排除其他干扰的同时充分利用JVM的预热(JIT)特性。推荐使OpenJDK开发的基准测试(Benchmark)工具JMH

  • JVM停顿

影响Java应用性能的头号大敌便是JVM停顿,说起停顿,大家耳熟能详的便是GC阶段的STW(Stop the World),除了GC,还有很多其他原因,如下图所示。

当怀疑我们的Java应用受停顿影响较大时,首先需要找出停顿的类型,下面一组JVM参数可以输出详细的安全点信息:

-XX:+LogVMOutput -XX:LogFile=/dev/shm/vm.log 
-XX:+PrintGCApplicationStoppedTime -XX:+PrintSafepointStatistics  
-XX:PrintSafepointStatisticsCount=1 -XX:+PrintGCApplicationConcurrentTime

在RocketMQ的性能测试中,发现存在大量的RevokeBias停顿,偏向锁主要是消除无竞争情况下的同步原语以提高性能,但考虑到RocketMQ中该场景比较少,便通过-XX:-UseBiasedLocking关闭了偏向锁特性。

停顿有时候会让我们的StopWatch变得很不精确,有一段时间经常被StopWatch误导,观察到一段代码耗时异常,结果花时间去优化也没效果,其实不是这段代码耗时,只是在执行这段代码时发生了停顿。停顿和动态编译往往是性能测试的两大陷阱。

  • GC

GC将Java程序员从内存管理中解救了出来,但也对开发低延时的Java应用带来了更多的挑战。对GC的优化个人认为是一项调整参数的工作,垃圾收集方面最值得关注的两个性能属性为吞吐量和延迟,对GC进行优化往往是寻求吞吐量和延迟上的折衷,没办法鱼和熊掌兼得。

RocketMQ通过GC调优后最终采取的GC参数如下所示,供大家参考。

-server -Xms8g -Xmx8g -Xmn4g
-XX:+UseG1GC -XX:G1HeapRegionSize=16m -XX:G1ReservePercent=25 
-XX:InitiatingHeapOccupancyPercent=30 -XX:SoftRefLRUPolicyMSPerMB=0 
-XX:SurvivorRatio=8 -XX:+DisableExplicitGC
-verbose:gc -Xloggc:/dev/shm/mq_gc_%p.log -XX:+PrintGCDetails 
-XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime
-XX:+PrintAdaptiveSizePolicy
-XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=30m

可以看出,我们最终全部切换到了G1,16年双十一线上MetaQ集群采用的也是这一组参数,基本上GC时间能控制在20ms以内(一些超大的共享集群除外)。

对于G1,官方推荐使用该-XX:MaxGCPauseMillis设置目标暂停时间,不要手动指定-Xmn和-XX:NewRatio,但我们在实测中发现,如果指定过小的目标停顿时间(10ms),G1会将新生代调整为很小,导致YGC更加频繁,老年代用得更快,所有还是手动指定了-Xmn为4g,在GC频率不高的情况下完成了10ms的目标停顿时间,这里也说明有时候一些通用的调优经验并不适用于所有的产品场景,需要更多的测试才能找到最合适的调优方法,往往需要另辟蹊径。

同时也分享下我们在使用CMS时遇到的一个坑,-XX:UseConcMarkSweepGC在使用CMS收集器的同时默认在新生代使用ParNew, ParNew并行收集垃圾使用的线程数默认值更机器cpu数(<8时)或者8+(ncpus-8)*5/8,大量垃圾收集线程同时运行会带来大量的停顿导致毛刺,可以使用-XX:ParallelGCThreads指定并行线程数。

还有避免使用finalize()方法来进行资源回收,除了不靠谱以为,会加重GC的压力,原因就不赘述了。

另外,我们也尝试了Azul公司的商业虚拟机Zing,Zing采用了C4垃圾收集器,但Zing的长处在于GC的停顿时间不随堆的增长而变长,特别适合于超大堆的应用场景,但RocketMQ使用的堆其实较小,大多数的内存需要留给PageCache,所以没有采用Zing。我这里有一份MetaQ在Zing下的测试报告,感兴趣的可以联系我,性能确实不错。

  • 线程池

Java应用里面总会有各式各样的线程池,运用线程池最需要考虑的两个因素便是:

  1. 线程池的个数,避免设置过多或过少的线程池数,过少会导致CPU资源利用率不够吞吐量低,过多的线程池会带来更多的同步原语、上下文切换、调度等方面的性能损失。
  2. 线程池的划分,需要根据具体的业务或者模块做详细的规划,线程池往往也起到了资源隔离的作用,RocketMQ中曾有一个重要模块和一个非重要模块共享一个线程池,在去年双十一的压测中,非重要模块因压力大占据了大部分的线程池资源,导致重要模块的业务发生饥饿,最终导致了无法恢复的密集FGC。

关于线程池个数的设置,可以参考《Java Concurrency in Practice》一书中的介绍:

需要注意的是,增加线程数并非提升性能的万能药,且不说多线程带来的额外性能损耗,大多数业务本质上都是串行的,由一系列并行工作和串行工作组合而成,我们需要对其进行合适的切分,找出潜在的并行能力。并发是不能突破串行的限制,需遵循Amdahl 定律

如果线程数设置不合理或者线程池划分不合理,可能会观察到虚假竞争,CPU资源利用不高的同时业务吞吐量也上不去。这种情况也很难通过性能分析工具找出瓶颈,需要对线程模型仔细分析,找出不合理和短板的地方。

事实上,对RocketMQ现存的线程模型进行梳理后,发现了一些不合理的线程数设置,通过对其调优,带来的性能提升非常可观。

CPU篇

CPU方面的调优尝试,主要在于亲和性和NUMA。

  • CPU亲和性

CPU亲和性是一种调度属性,可以将一个线程”绑定” 到某个CPU上,避免其在处理器之间频繁迁移。

同时,有一个开源的Java库可以支持在Java语言层面调用API完成CPU亲和性绑定。该库给出了Thread如何绑定CPU,如果需要对线程池里面的线程进行CPU绑定,可以自定义ThreadFactory来完成。

我们通过对RocketMQ中核心线程进行CPU绑定发现效果不明显,考虑到会引入第三方库便放弃了此方法。推测效果不明显的原因是我们在核心链路上已经使用了无锁编程,避免上下文切换带来的毛刺现象。

上下文切换确实是比较耗时的,同时也具有毛刺现象,下图是我们通过LockSupport.unpark/park来模拟上下文切换的测试,可以看出切换平均耗时是微妙级,但偶尔也会出现毫秒级的毛刺。

通过Perf也观察到unpark/park也确实能产生上下文切换。

此外有一个内核配置项isolcpus,可以将一组CPU在系统中孤立出来,默认是不会被使用的,该参数在GRUB中配置重启即可。CPU被隔离出来后可以通过CPU亲和性绑定或者taskset/numactl来分配任务到这些CPU以达到最优性能的效果。

  • NUMA

对于NUMA,大家的态度是褒贬不一,在数据库的场景忠告一般是关掉NUMA,但通过了解了NUMA的原理,觉得理论上NUMA对RocketMQ的性能提升是有帮助的。

前文提到了并发的调优是不能突破Amdahl 定律的,总会有串行的部分形成短板,对于CPU来讲也是同样的道理。随着CPU的核数越来越多,但CPU的利用率却越来越低,在64核的物理机上,RocketMQ只能跑到2500%左右。这是因为,所有的CPU都需要通过北桥来读取内存,对于CPU来说内存是共享的,这里的内存访问便是短板所在。为了解决这个短板,NUMA架构的CPU应运而生。

如下图所示,是两个NUMA节点的架构图,每个NUMA节点有自己的本地内存,整个系统的内存分布在NUMA节点的内部,某NUMA节点访问本地内存的速度(Local Access)比访问其它节点内存的速度(Remote Access)快三倍。

RocketMQ通过在NUMA架构上的测试发现有20%的性能提升,还是比较可观的。特别是线上物理机大都支持NUMA架构,对于两个节点的双路CPU,可以考虑按NUMA的物理划分虚拟出两个Docker进行RocketMQ部署,最大化机器的性能价值。

感兴趣的同学可以测试下NUMA对自家应用的性能影响,集团机器都从BIOS层面关闭了NUMA,如果需要测试,按如下步骤打开NUMA即可:

1.打开BIOS开关:

打开方式跟服务器相关。

2.在GRUB中配置开启NUMA

vi /boot/grub/grub.conf
添加boot参数:numa=on

3.重启

4.查看numa node个数

numactl --hardware
如果看到了>1个节点,即为支持NUMA

内存篇

可以将Linux内存分为以下三类:

  • 页错误

我们知道,为了使用更多的内存地址空间切更加有效地管理存储器,操作系统提供了一种对主存的抽象概念——虚拟存储器(VM),有了虚拟存储器,就必然需要有从虚拟到物理的寻址。进程在分配内存时,实际上是通过VM系统分配了一系列虚拟页,此时并未涉及到真正的物理页的分配。当进程真正地开始访问虚拟内存时,如果没有对应的物理页则会触发缺页异常,然后调用内核中的缺页异常处理程序进行的内存回收和分配。

页错误分为两种:

  1. Major Fault, 当需要访问的内存被swap到磁盘上了,这个时候首先需要分配一块内存,然后进行disk io将磁盘上的内容读回道内存中,这是一系列代价比较昂贵的操作。
  2. Minor Fault, 常见的页错误,只涉及页分配。

为了提高访存的高效性,需要观察进程的页错误信息,以下命令都可以达到该目的:

1. ps -o min_flt,maj_flt <PID>
2. sar -B

如果观察到Major Fault比较高,首先要确认系统参数vm.swappiness是否设置恰当,建议在机器内存充足的情况下,设置一个较小的值(0或者1),来告诉内核尽可能地不要利用磁盘上的swap区域,0和1的选择原则如下:

切记不要在2.6.32以后设置为0,这样会导致内核关闭swap特性,内存不足时不惜OOM也不会发生swap,前端时间也碰到过因swap设置不当导致的故障。

另一方面,避免触发页错误,内存频繁的换入换出,还有以下手段可以采用:

1.-XX:+AlwaysPreTouch,顾名思义,该参数为让JVM启动时将所有的内存访问一遍,达到启动后所有内存到位的目的,避免页错误。
2.对于我们自行分配的堆外内存,或者mmap从文件映射的内存,我们可以自行对内存进行预热,有以下四种预热手段,第一种不可取,后两种是最快的。

3.即使对内存进行了预热,当内存不够时,后续还是会有一定的概率被换出,如果希望某一段内存一直常驻,可以通过mlock/mlockall系统调用来将内存锁住,推荐使用JNA来调用这两个接口。不过需要注意的是内核一般不允许锁定大量的内存,可通过以下命令来增加可锁定内存的上限。

echo '* hard memlock      unlimited' >> /etc/security/limits.conf
echo '* soft memlock      unlimited' >> /etc/security/limits.conf
  • Huge Page

大家都知道,操作系统的内存4k为一页,前文说到Linux有虚拟存储器,那么必然需要有页表(Page Table)来存储物理页和虚拟页之间的映射关系,CPU访问存时首先查找页表来找到物理页,然后进行访存,为了提高寻址的速度,CPU里有一块高速缓存名为ranslation Lookaside Buffer (TLB),包含部分的页表信息,用于快速实现虚拟地址到物理地址的转换。

但TLB大小是固定的,只能存下小部分页表信息,对于超大页表的加速效果一般,对于4K内存页,如果分配了10GB的内存,那么页表会有两百多万个Entry,TLB是远远放不下这么多Entry的。可通过cpuid查询TLB Entry的个数,4K的Entry一般仅有上千个,加速效果有限。

为了提高TLB的命中率,大多数CPU支持大页,大页分为2MB和1GB,1GB大页是超大内存的不二选择,可通过grep pdpe1gb /proc/cpuinfo | uniq查看CPU是否支持1GB的大页。

开启大页需要配置内核启动参数,hugepagesz=1GB hugepages=10,设置大页数量可通过内核启动参数hugepages或者/proc/sys/vm/nr_hugepages进行设置。

内核开启大页过后,Java应用程序使用大页有以下方法:

  • 对于堆内存,有JVM参数可以用:-XX:+UseLargePages
  • 如果需要堆外内存,可以通过mount挂载hugetlbfs,mount -t hugetlbfs hugetlbfs /hugepages,然后通过mmap分配大页内存。

可以看出使用大页比较繁琐的,Linux提供透明超大页面 (THP)。THP 是可自动创建、管理和使用超大页面。可通过修改文件/sys/kernel/mm/transparent_hugepage/enabled来关闭或者打开THP。

但大页有一个弊端,如果内存压力大,需要换出时,大页会先拆分成小页进行换出,需要换入时再合并为大页,该过程会加重CPU的压力。

网卡篇

网卡性能诊断工具是比较多的,有ethtool, ip, dropwatch, netstat等,RocketMQ尝试了网卡中断和中断聚合两方面的优化手段。

  • 网卡中断

这方面的优化首先便是要考虑是否需要关闭irqbalance,它用于优化中断分配,通过自动收集系统数据来进行中断负载,同时还会综合考虑节能等因素。但irqbalance有个缺点是会导致中断自动漂移,造成不稳定的现象,在高性能的场合建议关闭。

关闭irqbalance后,需要对网卡的所有队列进行CPU绑定,目前的网卡都是由多队列组成,如果所有队列的中断仅有一个CPU进行处理,难以利用多核的优势,所以可以对这些网卡队列进行CPU一一绑定。

这部分优化对RocketMQ的小消息性能提升有很大的帮助。

  • 中断聚合

中断聚合的思想类似于Group Commit,避免每一帧的到来都触发一次中断,RocketMQ在跑到最大性能时,每秒会触发近20000次的中断,如果可以聚合一部分,对性能还是有一定的提升的。

可以通过ethtool设置网卡的rx-frames-irq和rx-usecs参数来决定凑齐多少帧或者多少时间过后才触发一次中断,需要注意的是中断聚合会带来一定的延迟。

总结

目前RocketMQ最新的性能基准测试中,128字节小消息TPS已达47W,如下图所示:

高性能的RocketMQ可应用于更多的场景,能接管和替代Kafka更多的生态,同时可以更大程度上承受热点问题,在保持高性能的同时,RocketMQ在低延迟方面依然具有领先地位,如下图所示,RocketMQ仅有少量10~50ms的毛刺延迟,Kafka则有不少500~1s的毛刺。

共同学习,资料分享

大多数人学习面临的痛点

实战经验缺乏

很多人学习一门技术,更多的是看视频看书,纯理论学习。背概念,缺乏真实的实战。很多同学看过不少RocketMQ博客或视频,理论知识丰富。但我们实际工作中会遇到的问题是各种各样的,缺少实战,当真正碰到问题就不知道如何运用所学知识去解决。

纯技术晦涩难懂,甚至作者刻意将问题困难化

市面上真正适合学习的RocketMQ 资料太少,有的书或资料虽然讲得比较深入,但是语言晦涩难懂,大多数人看完这些书基本都是从入门到放弃。学透RocketMQ 难道就真的就没有一种适合大多数同学的方法吗?

这次我针对RocketMQ技术知识难点特地分享一份PDF文档《RocketMQ实战源码解析文档》

由于篇幅限制,我这里只将此实战文档的所含内容全部展现出来了,需要获取完整文档用以学习的朋友们可以进Q群:909666042 免费获取!

本文档分为两大部分:

  1. 第一部分是 RocketMQ 实战,包括第1—8章这是本文档的主体内容,可快速用好RocketMQ这个分布式消息队列
  2. 第二部分是源码分析,包括第9到13章当有特殊的业务需求,需要更改或扩展 RocketMQ 现有功能的时候,这部分内容能帮助读者快速熟悉源码,找到要下手更改的地方,快速实现想要的功能

第一节和第二节:基础知识及生产环境的配置使用

主要包括:消息队列功能介绍、快速上手 RocketMQ·、小结、RocketMQ 各部分角色介绍、多机集群配置和部、发送 接收消息示例、常用管理命令等

第三节:用适合的方式发送和接收消息

不同类型的消费者、类型的生产者、如何存储队列位置信息、自定义日志输出、小结

第四节:分布式消息队列的协调者

NameServer 的功能、各个角色间的交互流程、底层通信机制、小结

第五节到第八节

  • 消息队列的核心机
  • 制可靠性优先的使用场
  • 景吞吐量优先的使用场
  • 景和其他系统交互

第9节到第12节

这几节是讲的RocketMQ的源码解析内容分别有

由于篇幅限制,我这里只将此实战文档的所含内容全部展现出来了,需要获取完整文档用以学习的朋友们可以909666042 免费获取!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容

  • 前言 阿里消息团队一直致力于RocketMQ的性能优化,双十一前进行了低延时(毛刺)优化,保障了双十一万亿消息的流...
    CleverApe阅读 6,654评论 0 2
  • 又是一年秋招季,哎呀妈呀我被虐的惨来~这不,前几阵失踪没更新博客,其实是我偷偷把时间用在复习课本了(雾 坚持在社区...
    tengshe789阅读 2,005评论 0 8
  • 1、java虚拟机发展史 1.1 Sun Classic jdk1.0-jdk1.4只能用解释器方式解...
    茨菇雪菜阅读 407评论 0 0
  • JVM架构 当一个程序启动之前,它的class会被类装载器装入方法区(Permanent区),执行引擎读取方法区的...
    cocohaifang阅读 1,650评论 0 7
  • 第二部分 自动内存管理机制 第二章 java内存异常与内存溢出异常 运行数据区域 程序计数器:当前线程所执行的字节...
    小明oh阅读 1,138评论 0 2