用kNN算法诊断乳腺癌

一、数据准备

乳腺癌数据包括569例细胞活检案例,每个案例有32个特征。
第一个特征是识别号码,
第二个特征是癌症诊断结果(癌症诊断结果用编码“M”表示恶性,用编码“B”表示良性),
其他30个特征是数值型的实验室测量结果。(其他30个数值型测量结果由数字化细胞核的10个不同特征的均值、标准差和最差值(即最大值)构成)。这些特征包括:
Radius(半径)、Texture(质地)、Perimeter(周长)、Area(面积)、Smoothness(光滑度)、Compactness(致密性)、Concavity(凹度)、Concave points(凹点)、Symmetry(对称性)、Fractal dimension(分形维数)

url<-'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
#原数据的列名为v1,v2,不好理解,因此header=F
wdbc<-read.csv(url,header = F)

二、数据预处理

#根据数据描述,对每一列重命名
wdbc.name<-c("Radius","Texture","Perimeter","Area","Smoothness","Compactness","Concavity","Concave points","Symmetry","Fractal dimension")
wdbc.name<-c(wdbc.name,paste(wdbc.name,"_mean",sep=""),paste(wdbc.name,"_worst",sep=""))
names(wdbc)<-c("id","diagnosis",wdbc.name)

最终的数据为:

str(wdbc)
attach(wdbc)
table(diagnosis)

可以得到有357个为良性,有212个为恶性 因为id列没有意义,去掉id列

wdbc<-wdbc[-1]

并将目标属性编码因子化B良性M恶性

diagnosis<-factor(diagnosis,levels=c("B","M"),labels=c("Benign","Malignant"))
diagnosis

并计算各自占比
round四舍五入round(x,digits=n)
prop.table得到边缘概率prop.table(x,margin=null)

round(prop.table(table(diagnosis))*100,digits=1)

通过summary详细地观察3个特征:可以看出不同特征的度量值差别大

summary(wdbc[c("Radius_mean","Area_mean","Smoothness_mean")])

kNN的距离计算在很大程度上依赖于输入特征的测量尺度。由于光滑度的范围是0.05~0.16,且面积的范围是143.5~2501.0,所以在距离计算中,面积的影响比光滑度的影响大很多,这可能潜在地导致我们的分类器出现问题,所以我们应用min-max标准化方法将特征值重新调整到一个标准范围内,对数据通过归一化来进行无量纲处理
即显然数据需要转换,转换函数为:

normalize<-function(x){
  return((x-min(x))/(max(x)-min(x)))
}

我们并不需要对这30个数值变量逐个进行min-max标准化,这里可以使用R中的一个函数来自动完成此过程
lapply()函数接受一个列表作为输入参数,然后把一个具体函数应用到每一个列表元素。因为数据框是一个含有等长度向量的列表,所以我们可以使用lapply()函数将normalize()函数应用到数据框中的每一个特征。最后一个步骤是,应用函数as.data.frame()把lapply()返回的列表转换成一个数据框。过程如下所示:

wdbc_n<-as.data.frame(lapply(wdbc[2:31],normalize))

这里使用的后缀_n是一个提示,即wdbc中的值已经被min-max标准化了。
为了确认转换是否正确应用,让我们来看看其中一个变量的汇总统计量:

summary(Area_mean)

正如预期的那样,area_mean变量的原始范围是143.5~2501.0,而现在的范围是0~1。

三、切分数据集

接下来需要切分数据集,实际需要构造training、validation、test,其中validation用来校正提高模型准确性,为简单起见,我们只用train和test
第一种方法:由于我们没有新病人的数据,所以使用前469条记录作为训练数据集,剩下的100条记录用来模拟新的病人

wdbc_train<-wdbc_n[1:469,]
wdbc_test<-wdbc_n[470:569,]
#存储目标变量标签
wdbc_train_labels<-wdbc[1:469,1]
wdbc_test_labels<-wdbc[470:569,1]
mal_rate<-table(wdbc_train_labels)
round(mal_rate[2]/sum(mal_rate),digits=2)

第二种方法:如果样本中的恶性肿瘤大部分分布在1,则将469作为训练集就有很大问题,此时采用随机取样

set.seed(1234)
ratio<-sample(1:dim(wdbc_n)[1],469,replace=F)
wdbc_train<-wdbc_n[ratio,]
wdbc_test<-wdbc_n[-ratio,]
wdbc_train_labels<-wdbc[ratio,1]
wdbc_test_labels<-wdbc[-ratio,1]
mal_rate<-table(wdbc_train_labels)
round(mal_rate[2]/sum(mal_rate),digits=2)

第三种方法:直接利用"caret"包中的crateDataPartition函数可自动分区

library(caret)
set.seed(1234)
ratio<-createDataPartition(y=diagnosis,p=0.8,list=FALSE)
wdbc_train<-wdbc_n[ratio,]
wdbc_test<-wdbc_n[-ratio,]
wdbc_train_labels<-wdbc[ratio,1]
wdbc_test_labels<-wdbc[-ratio,1]
mal_rate<-table(wdbc_train_labels)
round(mal_rate[2]/sum(mal_rate),digits=2)

四、构建模型

构建模型,class包中的knn函数,由于训练数据集含有469个实例,所以我们可能尝试k = 21,它是一个大约等于469的平方根的奇数。根据二分类的结果,使用奇数将消除各个类票数相等这一情况发生的可能性。
函数knn()返回一个因子向量,为测试数据集中的每一个案例返回一个预测标签,我们将该因子向量命名为wdbc_test_pred。
现在,我们可以使用knn()函数对测试数据进行分类:

library(class)
wdbc_test_pred<-knn(train=wdbc_train,test=wdbc_test,cl=wdbc_train_labels,k=21)

该过程的下一步就是评估wdbc_test_pred向量中预测的分类与wdbc_test_labels向量中已知值的匹配程度如何。为了做到这一点,我们可以使用gmodels添加包中的CrossTable()函数,它在第2章中介绍过。如果你还没有安装该添加包,可以使用install.packages("gmodels")命令进行安装。
在使用library(gmodels)命令载入该添加包后,可以创建一个用来标识两个向量之间一致性的交叉表。指定参数prop.chisq = FALSE,将从输出中去除不需要的卡方(chi-square)值,如下所示:

library(gmodels)
CrossTable(x=wdbc_test_labels,y=wdbc_test_pred,prop.chisq=FALSE)

行为真实结果,列为预测结果,对角框的数字越小,模型越好
选取两个变量作为横纵坐标进行画图,观察实际类别与预测的分类结果。

plot(wdbc_test$Texture_mean,wdbc_test$Radius_mean,col=wdbc_test_pred,pch=as.integer(wdbc_test_labels))

颜色代表分类后得到的结果,形状代表真实的类别。从检测结果和图上都可以看出,分类结果基本与真实结果一致。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容