TCGAbiolinks下载表达谱数据及临床数据

  • 加载包

library(TCGAbiolinks)
library(dplyr)
library(DT)
library(SummarizedExperiment)

  • 下载临床数据

clinical_data <- GDCquery_clinic(project = "TCGA-LIHC", type = "clinical")

  • 下载表达谱数据

Expr_df <- GDCquery(project = "TCGA-LIHC",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "HTSeq - FPKM")
GDCdownload(Expr_df, method = "api", files.per.chunk = 100)
expdat <- GDCprepare(query = Expr_df)
Expr_matrix=assay(expdat)

但此时得到的是ensemblID,需要转成我们熟悉的symbol ID
  • 基因ID的转换

library(clusterProfiler)
gene<-bitr(rownames(Expr_matrix),"ENSEMBL","SYMBOL","org.Hs.eg.db")
Expr_matrix<-cbind(rownames(Expr_matrix),Expr_matrix)
colnames(Expr_matrix)[1]<-"ENSEMBL"
df<-merge(gene,Expr_matrix,by="ENSEMBL")

  • 整理分组信息

group <- strsplit(colnames(df_50)[-1],"[-]")
class<-sapply(group,function(I){I[4]})
control<-grepl("11",class)
control<-which(control==TRUE)
class[control]<-"normal"
class[-control]<-"cancer"

  • 整理TCGAbiolinks临床数据
    整体思路如下:
  1. clinical data是submitter_id,只有三个字段,即“TCGA-3Z-A93Z”,而表达谱数据有7个"TCGA-3Z-A93Z-01A-01R-0864-07",需要把表达谱数据ID拆分成3个字段与submitter_id对上
  2. vital_status为生存分析中的OS,将Alive和Dead改成0和1
  3. 关于OS.time: 当患者dead时,days_to_death为OS.time;当患者alive时,days_to_last_follow_up为OS.time
  4. 此外还有性别,年龄,种族等临床信息,大家自行选择
#拆分TCGA表达谱7个字段的ID,并组成3个
newid<-lapply(strsplit(rownames(df_50),'-'),function(i){paste0(i[1:3],collapse = '-')})
newid<-sapply(1:611,function(i){newid[[i]]})
df_50<-cbind(df_50,newid)
colnames(clinical_data1)[1]<-'newid'
df_OS<-merge(clinical_data1,df_50,by="newid")
df_OS$OS.time<-df_OS$OS.time/365
rownames(df_OS)<-df_OS[,1]
#去重,ID存在一对多的情况,因为懒我就robust的直接删掉了,你可以自己进行高标准选择
df_OS_dropdu<-df_OS[-which(duplicated(df_OS[,1])),]
realdata<-df_OS_dropdu
rownames(realdata)<-realdata[,1]
realdata<-realdata[,-1]
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容