numpy中的hstack()、vstack()、stack()、concatenate()函数详解

本文主要介绍一下numpy中的几个常用函数,包括hstack()、vstack()、stack()、concatenate()。

1、concatenate()

我们先来介绍最全能的concatenate()函数,后面的几个函数其实都可以用concatenate()函数来进行等价操作。

concatenate()函数根据指定的维度,对一个元组、列表中的list或者ndarray进行连接,函数原型:

numpy.concatenate((a1, a2, ...), axis=0)

先来看几个例子,一个2*2的数组和一个1*2的数组,在第0维进行拼接,得到一个3*2的数组:

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
np.concatenate((a, b), axis=0)

输出为:

array([[1, 2],
       [3, 4],
       [5, 6]])

进一步,一个2*2的数组和一个2*1的数组,在第01维进行拼接,得到一个2*3的数组:

np.concatenate((a, b.T), axis=1)

输出为:

array([[1, 2, 5],
       [3, 4, 6]])

上面两个简单的例子中,拼接的维度的长度是不同的,但是其他维度的长度必须是相同的,这也是使用concatenate()函数的一个基本原则,违背此规则就会报错,例如一个2*2的数组和一个1*2的数组,在第1维进行拼接:

np.concatenate((a, b), axis=1)

上面的代码会报错:

ValueError: all the input array dimensions except for the concatenation axis must match exactly

2、stack()

stack()函数的原型是numpy.stack(arrays, axis=0),即将一堆数组的数据按照指定的维度进行堆叠。
我们先看两个简单的例子:

a = np.array([1,2,3])
b = np.array([2,3,4])
np.stack([a,b],axis=0)

输出为:

array([[1, 2, 3],
       [2, 3, 4]])

进一步:

np.stack([a,b],axis=1)

输出为:

array([[1, 2],
       [2, 3],
       [3, 4]])

如果换作是二维数组:

a = np.array([[1,2,3]])
b = np.array([[2,3,4]])
np.stack([a,b],axis=0)

输出为:

array([[[1, 2, 3]],

       [[2, 3, 4]]])

可以看到,进行stack的两个数组必须有相同的形状,同时,输出的结果的维度是比输入的数组都要多一维的。我们拿第一个例子来举例,两个含3个数的一维数组在第0维进行堆叠,其过程等价于先给两个数组增加一个第0维,变为1*3的数组,再在第0维进行concatenate()操作:

a = np.array([1,2,3])
b = np.array([2,3,4])
a = a[np.newaxis,:]
b = b[np.newaxis,:]
np.concatenate([a,b],axis=0)

输出为:

array([[1, 2, 3],
       [2, 3, 4]])

3、vstack()

vstack()的函数原型:vstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它是垂直(按照行顺序)的把数组给堆叠起来。
举两个简单的例子:

a = np.array([1,2,3])
b = np.array([2,3,4])
np.vstack([a,b])

输出为:

array([[1, 2, 3],
       [2, 3, 4]])

进一步:

a=[[1],[2],[3]]
b=[[1],[2],[3]]
np.vstack([a,b])

输出为:

array([[1],
       [2],
       [3],
       [1],
       [2],
       [3]])

如果进行vstack的数组至少有两维,那么相当于np.concatenate([a,b],axis=0),我们通过例子进行对比:

a=[[1],[2],[3]]
b=[[1],[2],[3]]
np.concatenate([a,b],axis=0)

输出为:

array([[1],
       [2],
       [3],
       [1],
       [2],
       [3]])

可以看到,跟刚才的结果是一致的,但是如果进行堆叠的两个数组只有一维,那么结果是不同的:

a = np.array([1,2,3])
b = np.array([2,3,4])
np.concatenate([a,b],axis=0)

上面得到的结果为:

array([1, 2, 3, 2, 3, 4])

4、hstack()

hstack()的函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它其实就是水平(按列顺序)把数组给堆叠起来,与vstack()函数正好相反。举几个简单的例子:

a = np.array([1,2,3])
b = np.array([2,3,4])
np.hstack([a,b])

输出为:

array([1, 2, 3, 2, 3, 4])

进一步,对于二维数组的情形:

a=[[1],[2],[3]]
b=[[1],[2],[3]]
np.hstack([a,b])

输出为:

array([[1, 1],
       [2, 2],
       [3, 3]])

如果进行hstack的数组至少有两维,那么相当于np.concatenate([a,b],axis=1)

a=[[1],[2],[3]]
b=[[1],[2],[3]]
np.concatenate([a,b],axis=1)

输出跟刚才的结果是一致的

array([[1, 1],
       [2, 2],
       [3, 3]])

只有一维的情况下,并不等价于np.concatenate([a,b],axis=1),反而等价于np.concatenate([a,b],axis=0)。

5、tf中的stack()

tensorflow中也提供了stack函数,跟numpy中的stack函数的作用是一样的,我们通过例子来体会:

import tensorflow as tf
a = tf.convert_to_tensor([1,2,3])
b = tf.convert_to_tensor([2,3,4])

stack_ab = tf.stack([a,b])

a1 = tf.expand_dims(a,axis=0)
b1 = tf.expand_dims(b,axis=0)
concat_ab = tf.concat([a1,b1],axis=0)

with tf.Session() as sess:
    print(sess.run(stack_ab))
    print(sess.run(concat_ab))

输出为:

[[1 2 3]
 [2 3 4]]
[[1 2 3]
 [2 3 4]]
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容

  • 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack()函数了,我查阅了numpy的官方文档,在网...
    阿喆_399a阅读 533评论 0 0
  • 基础篇NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(...
    oyan99阅读 5,120评论 0 18
  • 来源:NumPy Tutorial - TutorialsPoint 译者:飞龙 协议:CC BY-NC-SA 4...
    布客飞龙阅读 32,740评论 6 96
  • 先决条件 在阅读这个教程之前,你多少需要知道点python。如果你想从新回忆下,请看看Python Tutoria...
    舒map阅读 2,572评论 1 13
  • 介绍 NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和...
    喔蕾喔蕾喔蕾蕾蕾阅读 1,767评论 0 5