鸢尾花数据散点图分析

分析:

  • 引入warnings库
import warnings
warnings.filterwarnings('ignore')    # 将警告设置为忽略
  • 从sklearn机器学习库中引入datasets数据集
from sklearn import datasets
  • 从matlotlib库引入pyplot作为plt
from matplotlib import pyplot as plt
  • 调用函数
iris = datasets.load_iris()
  • 查看数据集中load_iris的数据类型
type(iris)
——sklearn.utils.Bunch
  • 获取iris所有的键
iris.keys()
——dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
  • 打印iris数据集中DESCR的内容
print(iris.DESCR)
# iris.DESCR    # 相当于iris['DESCR']
Iris Plants Database
====================

Notes
-----
Data Set Characteristics:
    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica
    :Summary Statistics:

    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)
    ============== ==== ==== ======= ===== ====================

    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988

This is a copy of UCI ML iris datasets.
[http://archive.ics.uci.edu/ml/datasets/Iris](http://archive.ics.uci.edu/ml/datasets/Iris)

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

References
----------
   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1\.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64\.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...</pre>

  • 输出iris数据集中data的内容
X = iris.data
X
——array([[5.1, 3.5, 1.4, 0.2],
         [4.9, 3. , 1.4, 0.2],
         [4.7, 3.2, 1.3, 0.2],
         [4.6, 3.1, 1.5, 0.2],
         [5. , 3.6, 1.4, 0.2],
         ...
         [6.7, 3. , 5.2, 2.3],
         [6.3, 2.5, 5. , 1.9],
         [6.5, 3. , 5.2, 2. ],
         [6.2, 3.4, 5.4, 2.3],
         [5.9, 3. , 5.1, 1.8]])
  • data的维度
X.ndim
——2
  • data的型状
X.shape
——(150, 4)

data的元素个数

X.size
——600
  • iris数据集中特征列的名字
iris.feature_names
——['sepal length (cm)',
   'sepal width (cm)',
   'petal length (cm)',
   'petal width (cm)']
  • 确认散点图中每个点的y坐标,

鸢尾花分为三类:山鸢尾、变色鸢尾和维吉尼亚鸢尾, iris.target获取iris鸢尾花数据集中的target数据,其中0代表山鸢尾,1代表变色鸢尾,2代表维吉尼亚鸢尾

y = iris.target    # 只有一列(与data一一对应)
y
——array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

提取萼片维度

X = X[: , :2]
X
——array([[5.1, 3.5],
         [4.9, 3. ],
         [4.7, 3.2],
         [4.6, 3.1],
         [5. , 3.6],
         ...
         [6.7, 3. ],
         [6.3, 2.5],
         [6.5, 3. ],
         [6.2, 3.4],
         [5.9, 3. ]])
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。