资料来自 Jiawei Han Data Mining:Concepts and Techniques Chapter 8
True Positive (真正, TP)被模型预测为正的正样本;可以称作判断为真的正确率
True Negative(真负 , TN)被模型预测为负的负样本 ;可以称作判断为假的正确率
False Positive (假正, FP)被模型预测为正的负样本;可以称作误报率
False Negative(假负 , FN)被模型预测为负的正样本;可以称作漏报率
True Positive Rate(真正率 , TPR)或灵敏度(sensitivity) TPR = TP /(TP + FN) 正样本预测结果数 / 正样本实际数
True Negative Rate(真负率 , TNR)或特指度(specificity) TNR = TN /(TN + FP) 负样本预测结果数 / 负样本实际数
False Positive Rate (假正率, FPR) FPR = FP /(FP + TN) 被预测为正的负样本结果数 /负样本实际数
False Negative Rate(假负率 , FNR) FNR = FN /(TP + FN) 被预测为负的正样本结果数 / 正样本实际数