【火炉炼AI】深度学习002-构建并训练单层神经网络模型

【火炉炼AI】深度学习002-构建并训练单层神经网络模型

(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2 )

前面我们介绍了神经网络的基本结构单元-感知器,现在我们再升一级,看看神经网络的基本结构和训练方法。


1. 单层神经网络

单层神经网络由一个层次中的多个神经元组成,总体来看,单层神经网络的结构是:一个输入层,一个隐含层,一个输出层。如下为结构示意图。

image

图中描述的是前向网络,但其反向传播网络的结构也是一样的。蓝色方框表示输入层,绿色圆圈表示隐含层,输出层没有绘制出来。图片来源于2017/7/20 朱兴全教授学术讲座观点与总结第二讲:单个神经元/单层神经网络

也可以从下图中看出单层神经网络的基本结构:

image

那么从代码上怎么创建单层神经网络,并对其进行训练呢?

1.1 加载数据集

首先我们加载数据集,该数据集很简单,包含16行,四列,前两列是double型数据,构成了特征列,后两列是整数(0或1),构成了标签列。加载方式很简单,前面讲过多次,此处只把该数据集中特征列的分布情况绘制出来。如下

image

1.2 建立模型并训练

数据集准备完成后, 就需要构建单层神经网络模型,并对其进行训练。

# 构建单层NN模型,该模型的隐含层含有两个感知器
import neurolab as nl
x_min, x_max = dataset_X[:,0].min(), dataset_X[:,0].max()
y_min, y_max = dataset_X[:,1].min(), dataset_X[:,1].max()
single_layer_net = nl.net.newp([[x_min, x_max], [y_min, y_max]], 2) # 隐含层含有两个神经元
# 所以本单层NN模型含有两个输入神经元,两个隐含层神经元,两个输出神经元
cost = single_layer_net.train(dataset_X, dataset_y, epochs=50, show=2, lr=0.01)
# 训练该单层NN模型,50个回合,每2个回合显示一下训练结果,学习速率为0.01

-------------------------------------输---------出--------------------------------

Epoch: 2; Error: 7.5;
Epoch: 4; Error: 7.0;
Epoch: 6; Error: 4.0;
Epoch: 8; Error: 4.0;
Epoch: 10; Error: 4.0;
Epoch: 12; Error: 4.0;
Epoch: 14; Error: 4.0;
Epoch: 16; Error: 4.0;
Epoch: 18; Error: 4.0;
Epoch: 20; Error: 4.0;
Epoch: 22; Error: 4.0;
Epoch: 24; Error: 4.0;
Epoch: 26; Error: 4.0;
Epoch: 28; Error: 4.0;
Epoch: 30; Error: 4.0;
Epoch: 32; Error: 4.0;
Epoch: 34; Error: 4.0;
Epoch: 36; Error: 4.0;
Epoch: 38; Error: 4.0;
Epoch: 40; Error: 4.0;
Epoch: 42; Error: 4.0;
Epoch: 44; Error: 4.0;
Epoch: 46; Error: 4.0;
Epoch: 48; Error: 4.0;
Epoch: 50; Error: 4.0;
The maximum number of train epochs is reached

--------------------------------------------完-------------------------------------

可以看出在第6个回合时,cost就达到最低,并不再变化,表示已经收敛,再提高训练回合数也用处不大。将Error变化图绘制出来可以得到:

image

1.3 使用训练好的模型来预测新样本

训练后的模型肯定是要用它来预测新样本,期望它能对从来没有见过的新样本也能得到理想的结果。

预测的代码为:

# 用训练好的模型来预测新样本
new_samples=np.array([[0.3, 4.5],
                      [4.5, 0.5],
                      [4.3, 8]])
print(single_layer_net.sim(new_samples))

-------------------------------------输---------出--------------------------------

[[0. 0.]
[1. 0.]
[1. 1.]]

--------------------------------------------完-------------------------------------

单单从结果上来看,我们成功的构建了单层NN模型并对其进行训练,通过训练后的模型来成功预测了新样本,一般的,一个深度学习模型流程就是这样的。

单层神经网络模型虽然结构简单,训练很快,比较适合一些简单问题,对于复杂一些的问题,这个模型就会力不从心,并且,有时我们的优化方法并不一定能够找到所希望的优化参数,也找不到所需要的拟合函数,由于模型比较简单,难以学习到复杂的内在机理,很容易产生欠拟合。

########################小**********结###############################

1,单层神经网络模型结构简单,训练耗时短,能够解决的问题也相对比较简单,对于比较复杂的问题会出现欠拟合,故而应用上受到一定限制,目前直接使用单层神经网络模型的情况非常少。

#################################################################


注:本部分代码已经全部上传到(我的github)上,欢迎下载。

参考资料:

1, Python机器学习经典实例,Prateek Joshi著,陶俊杰,陈小莉译

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容