numpy如何并行计算

python因为有GIL锁,因此多线程也只能使用一个处理器,但是numpy是例外:
http://scipy-cookbook.readthedocs.io/items/ParallelProgramming.html 这篇文字讲了numpy的并行计算,我把自己的理解总结如下:

numpy本身的矩阵运算(array operations)可以绕过GIL

因为numpy内部是用C写的,不经过python解释器,因此它本身的矩阵运算(array operations)都可以使用多核,此外它内部还用了BLAS(the Basic Linear Algebra Subroutines),因此可以进一步优化计算速度。

多线程(Threads),numpy的矩阵运算和IO一样,都会释放GIL

据我理解即使释放解释器,numpy因为不依赖解释器,所以仍然在运行;而其他线程这个时候也可以使用解释器,如果其他线程也有numpy的代码,那么该numpy也可以同样释放解释器。

while a thread is waiting** for IO **(for you to type something, say, or for something to come in the network) python releases the GIL so other threads can run. And, more importantly for us, while numpy is doing an array operation, python also releases the GIL. Thus if you tell one thread to do, (A和B都是numpy矩阵):

>>> A = B + C
>>> print A

During the print operations and the % formatting operation, no other thread can execute. But during the A = B + C, another thread can run - and if you've written your code in a numpy style, much of the calculation will be done in a few array operations like A = B + C. Thus you can actually get a speedup from using multiple threads.

多进程(Processes)自然更加能解决并行问题

多进程间numpy arrays也可共享,具体怎么共享再说

It is possible to share memory between processes, including numpy arrays

最后这个例子特别好:

Comparison

Here is a very basic comparison which illustrates the effect of the GIL (on a dual core machine).

import numpy as np
import math
def f(x):
    print x
    y = [1]*10000000
    [math.exp(i) for i in y]
def g(x):
    print x
    y = np.ones(10000000)
    np.exp(y)

from handythread import foreach
from processing import Pool
from timings import f,g
def fornorm(f,l):
    for i in l:
        f(i)
time fornorm(g,range(100))
time fornorm(f,range(10))
time foreach(g,range(100),threads=2)
time foreach(f,range(10),threads=2)
p = Pool(2)
time p.map(g,range(100))
time p.map(f,range(10))

100 * g() 10 * f()
normal 43.5s 48s
2 threads 31s 71.5s
2 processes 27s 31.23

For function f(), which does not release the GIL, threading actually performs worse than serial code, presumably due to the overhead of context switching. However, using 2 processes does provide a significant speedup. For function g() which uses numpy and releases the GIL, both threads and processes provide a significant speed up, although multiprocesses is slightly faster.

我自己用代码仿照写了一个例子,可以直接运行(python3.6):https://gist.github.com/miniyk2012/4a2edf98493d91c60af06232b6c69582

注:

这篇文章假设numpy本身无法利用多核, 因此需要python写多线程来让numpy在多核跑.
其实numpy本身也是可以利用多核的, 见这篇文章: https://roman-kh.github.io/numpy-multicore/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343