2024-03-19让 LLM 稳定输出 JSON

LLMs 是如何工作的

非常高层级的 GPT 模型,包括 ChatGPT、GPT-4、GPT-3.5-turbo,它们接受过庞大的数据集的训练,包括互联网、维基百科、公共 GitHub 代码和其他授权材料。它们被称为自回归,因为它们所做的只是综合所有这些信息。它们接受一个 prompt,或者我们可以称之为上下文。它们查看 prompt。然后它们基本上只是决定,给定这个 prompt,给定这个输入,下一个单词应该是什么?它实际上只是在预测下一个单词

例如,如果给定 GPT 的输入是,“the largest city in the United States is“(美国最大的城市是),那么答案就是 New York City(纽约市)。LLMs 会一个字一个字地思考,LLMs 会返回 “New”、“York”,然后是“City”。同样,在更具对话性的环境中,如果我们问它地球和太阳之间的距离是多少。GPT 已经从互联网上学过这个,它将输出 9400 万英里。它是根据输入逐个单词逐个单词思考的。

在底层,LLMs 真正做的是每次输出单词时,都会查看一堆候选单词并为它们分配概率。例如,在最初的例子中,“美国最大的城市是”,它可能有很多候选城市,New 代表“纽约”(New York),或者“新泽西”(New Jersey),或者其他什么,Los 代表“洛杉矶”(Los Angeles),然后还有其他一些可能的例子。你可以看到,它确实认为“New York City”(纽约市)可能是正确的答案,因为 New 的概率为 95%。在这种情况下,它通常会选择最有可能的结果,所以它会选择 New,然后继续前进。这个单词出现后,我们现在就知道 New 是第一个单词,所以它对下一个单词是什么就有了更多的限制。

我们可以看到,现在它认为 New York(纽约)的可能性要高得多,但它也在考虑 New Brunswick(新不伦瑞克)、New Mexico(新墨西哥)和 New Delhi(新德里)等。直到完成第二个单词,这基本上是模型的叠加。它基本上知道答案是 New York City,概率几乎是 100%。但它仍在考虑其他一些剩余概率很低的选项,比如 County(县)、New York Metro(纽约地铁)、New York Times(纽约时报),但最终它选择了 City 并给出答案。

对于更专业的 LLM 人士来说,这在技术上过于简单化了。LLMs 并不是真正在预测单词,而是在预测 token,比如单词片段,这实际上是一种更有效的表达英语的方式,主要是因为单词片段会在一堆不同的单词中重复,而不是单词本身会重复。但概念仍然是一样的。LLM 在这种上下文中,很可能会连续输出一堆不同的 token。就是这样,这就是这些语言模型的真正含义。

详细内容请关注:

ReAct 是如何工作的

ReAct Prompt 模版

TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""

REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools:

{tool_descs}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!

Question: {query}"""

分析

在实践过程中发现:

  • ReAct 按照 Prompt 的步骤一步步执行。
  • 通过设置停止词,当生成与停止词一样的输出时,模型停止生成。
  • 进行工具和参数解析(即处理 Action 和 Action Input),并调用工具。
  • 将工具调用结果进行 ReAct 格式进行拼装,调用模型继续进行续写生成。
  • 直到遇见 Final Answer: ,获得最终答案。

通过这现象,结合 LLMs 的工作原理,给定这个 prompt,给定这个输入,模型能预测下一个单词应该是什么。

实践

COND_DATA_PROMPT = """根据提供 json_data 数据和用户问题生成 JSON 格式,其中 key 分别为 'on' 和 'how'。

要求:
- 'on' 的取值规则为两个数据集合对象中相同的key,'how' 的取值只能 outer、inner、left、right 之一,需要根据数据和用户问题进行分析选择其中一个,不能随便编造。
- 请生成包括 'on' 和 'how' 的 JSON。
- 不要输出 JSON 内容以外的其它文本。

按以下格式输出:

用户问题:
近三年东方财富、贵州茅台、中国平安的净利润、经营活动现金流入分别是多少

json_data 数据:
[{{"报告期": "20221231", "净利润": 75828913858.79, "机构全称": "贵州茅台"}},\
{{"报告期": "20211231", "净利润": 230951727.5, "机构全称": "贵州茅台"}},\
{{"报告期": "20201231", "净利润": 5062633598.29, "机构全称": "贵州茅台"}}]
[{{"报告期": "20221231", "经营活动现金流入": 431466.19, "机构全称": "贵州茅台"}},\
{{"报告期": "20211231", "经营活动现金流入": 3225481.84, "机构全称": "贵州茅台"}}]

\```json
{{
  "on": ["报告期", "机构全称"],
  "how": "outer"
}}  
\```

Begin!

用户问题:
{question}

json_data 数据:
{json_data}"""

经过多次验证总能得到符合预期的 JSON 结构

image.png

小结

核心思想是利用了大模型的续写能力,按照 Prompt 中的步骤进行续写。即:给定这个 prompt,给定这个输入,模型高效能下一个单词应该是什么。

推荐阅读

参考资料:

ReAct: Synergizing Reasoning and Acting in Language Models

https://mp.weixin.qq.com/s/F1FaJN1yUpDivuw0eoMcYA

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容