iOS - cache_t分析

1. cache中存储的是什么?

  • 查看cache_t的源码,发现分成了3个架构的处理,其中真机的架构中,mask和bucket是写在一起,目的是为了优化,可以通过各自的掩码来获取相应的数据

    • CACHE_MASK_STORAGE_OUTLINED 表示运行的环境 模拟器 或者 macOS
    • CACHE_MASK_STORAGE_HIGH_16 表示运行环境是 64位的真机
    • CACHE_MASK_STORAGE_LOW_4 表示运行环境是 非64位的真机
struct cache_t {
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED//macOS、模拟器 -- 主要是架构区分
    // explicit_atomic 显示原子性,目的是为了能够 保证 增删改查时 线程的安全性
    //等价于 struct bucket_t * _buckets;
    //_buckets 中放的是 sel imp
    //_buckets的读取 有提供相应名称的方法 buckets()
    explicit_atomic<struct bucket_t *> _buckets;
    explicit_atomic<mask_t> _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16 //64位真机
    explicit_atomic<uintptr_t> _maskAndBuckets;//写在一起的目的是为了优化
    mask_t _mask_unused;
    
    //以下都是掩码,即面具 -- 类似于isa的掩码,即位域
    // 掩码省略....
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4 //非64位 真机
    explicit_atomic<uintptr_t> _maskAndBuckets;
    mask_t _mask_unused;

    //以下都是掩码,即面具 -- 类似于isa的掩码,即位域
    // 掩码省略....
#else
#error Unknown cache mask storage type.
#endif
    
#if __LP64__
    uint16_t _flags;
#endif
    uint16_t _occupied;

    //方法省略.....
}
  • 查看bucket_t的源码,同样分为两个版本,真机非真机,不同的区别在于selimp的顺序不一致
struct bucket_t {
private:
#if __arm64__ //真机
    //explicit_atomic 是加了原子性的保护
    explicit_atomic<uintptr_t> _imp;
    explicit_atomic<SEL> _sel;
#else //非真机
    explicit_atomic<SEL> _sel;
    explicit_atomic<uintptr_t> _imp;
#endif
    //方法等其他部分省略
}

所以通过上面两个结构体源码可知,cache中缓存的是sel-imp
整体的结构如下图所示

2. 在cache中查找sel-imp

cache_t中查找存储的sel-imp,有以下两种方式

  • 通过源码查找
  • 脱离源码在项目中查找

准备工作

  • 定义一个LGPerson类,并定义两个属性5个实例方法及其实现
    .h


    .m

  • main中定义LGPerson类的对象p,并调用其中的3个实例方法,在p调用第一个方法处加一个断点

2.1. 通过源码查找

  • 运行执行,断在[p sayHello]部分,此时执行以下lldb调试流程

    • cache属性的获取,需要通过pclass的首地址平移16字节,即首地址+0x10获取cache的地址

    • 从源码的分析中,我们知道sel-imp是在cache_t_buckets属性中(目前处于macOS环境),而在cache_t结构体中提供了获取_buckets属性的方法buckets()

    • 获取了_buckets属性,就可以获取sel-imp了,这两个的获取在bucket_t结构体中同样提供了相应的获取方法sel() 以及imp(pClass)

由上图流程可知,在没有执行方法调用时,此时的cache是没有缓存的,执行了一次方法调用,cache中就有了一个缓存,即调用一次方法就会缓存一次方法

验证打印的selimp就是我们调用的呢?可以通过machoView打开target可执行文件,在方法列表中查看其imp的值是否是一致的,如下所示,发现是一致的,所以打印的这个sel-imp就是LGPerson的实例方法

  • 我们再次调用一个方法,这次我们想要获取第二个sel,其调试的lldb如下

那么获取第二个呢?曾提及过一个概念 指针偏移,所以我们这里可以通过_buckets属性的首地址偏移,即 p *($9+1)即可获取第二个方法的sel 和imp
如果有多个方法需要获取,以此类推,例如p *($9+i)

2.2. 脱离源码通过项目查找

脱离源码环境,就是将所需的源码的部分拷贝至项目中,其完整代码如下

typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits

struct lg_bucket_t {
    SEL _sel;
    IMP _imp;
};

struct lg_cache_t {
    struct lg_bucket_t * _buckets;
    mask_t _mask;
    uint16_t _flags;
    uint16_t _occupied;
};

struct lg_class_data_bits_t {
    uintptr_t bits;
};

struct lg_objc_class {
    Class ISA;
    Class superclass;
    struct lg_cache_t cache;             // formerly cache pointer and vtable
    struct lg_class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
};


int main(int argc, const char * argv[]) {
    @autoreleasepool {
        LGPerson *p  = [LGPerson alloc];
        Class pClass = [LGPerson class];  // objc_clas
        [p say1];
        [p say2];
        //[p say3];
        //[p say4];

        struct lg_objc_class *lg_pClass = (__bridge struct lg_objc_class *)(pClass);
        NSLog(@"%hu - %u",lg_pClass->cache._occupied,lg_pClass->cache._mask);
        for (mask_t i = 0; i<lg_pClass->cache._mask; i++) {
            // 打印获取的 bucket
            struct lg_bucket_t bucket = lg_pClass->cache._buckets[I];
            NSLog(@"%@ - %p",NSStringFromSelector(bucket._sel),bucket._imp);
        }

        
        NSLog(@"Hello, World!");
    }
    return 0;
}
  • 这里有个问题需要注意,在源码中,objc_class的ISA属性是继承自objc_object的,但在我们将其拷贝过来时,去掉了objc_class的继承关系,需要将这个属性明确,否则打印的结果是有问题,所以得加上ISA属性,打印结果

  • 在增加两个方法的调用,即解开say3say4的注释,其打印结果如下

针对上面的打印结果,有以下几点疑问

  • 1、_mask是什么?
  • 2、_occupied 是什么?
  • 3、为什么随着方法调用的增多,其打印的occupied 和 mask会变化
  • 4、bucket数据为什么会有丢失的情况?,例如2-7中,只有say3、say4方法有函数指针
  • 5、2-7中say3、say4的打印顺序为什么是say4先打印,say3后打印,且还是挨着的,即顺序有问题?
  • 6、打印的cache_t中的_occupied为什么是从2开始?

3. cache_t底层原理分析

  • 首先,从cache_t中的_mask属性开始分析,找cache_t中引起变化的函数,发现了incrementOccupied()函数

incrementOccupied()的具体实现为

void incrementOccupied(); //Occupied自增

//👇具体实现
void cache_t::incrementOccupied() 
{
    _occupied++;
}
  • 源码中,全局搜索incrementOccupied()函数,发现只在cache_t的insert方法有调用

  • insert方法,理解为cache_t的插入,而cache中存储的就是sel-imp,所以cache的原理从insert方法开始分析,以下是cache原理分析的流程图

    Cache_t原理分析图来自 Cooci

  • 全局搜索insert( 方法,发现只有cache_fill方法中的调用符合

  • 搜索cache_fill,发现在写入之前,还有一步操作,即cache读取,即查找sel-imp,如下所示

但本文的重点还是分析cache存储的原理,接下来根据cache_t写入的流程图,着重分析insert方法

3.1 insert方法分析

insert其源码实现如下

主要分为以下几部分

  • 【第一步】计算出当前的缓存占用量

    关于缓存占用量的计算,有以下几点说明:

    • alloc申请空间时,此时的对象已经创建,如果再调用init方法,occupied也会+1
    • 当有属性赋值时,会隐式调用set方法,occupied也会增加,即有几个属性赋值,occupied就会在原有的基础上加几个
    • 当有方法调用时,occupied也会增加,即有几次调用方法,occupied就会在原有的基础上加几个
    • 根据occupied的值计算出当前的缓存占用量,当属性未赋值及无方法调用时,此时的occupied()为0,而newOccupied为1,如下所示
    mask_t newOccupied = occupied() + 1;
    
  • 【第二步】根据缓存占用量判断执行的操作

    • 如果是第一次创建,则默认开辟4
    if (slowpath(isConstantEmptyCache())) { //小概率发生的 即当 occupied() = 0时,即创建缓存,创建属于小概率事件
    // Cache is read-only. Replace it.
    if (!capacity) capacity = INIT_CACHE_SIZE; //初始化时,capacity = 4(1<<2 -- 100)
    reallocate(oldCapacity, capacity, /* freeOld */false); //开辟空间
    //到目前为止,if的流程的操作都是初始化创建
    }
    
    • 如果缓存占用量小于等于3/4,则不作任何处理
    else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) { 
    // Cache is less than 3/4 full. Use it as-is.
    }
    
    • 如果缓存占用量超过3/4,则需要进行两倍扩容以及重新开辟空间
    else {//如果超出了3/4,则需要扩容(两倍扩容)
    //扩容算法: 有cap时,扩容两倍,没有cap就初始化为4
    capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;  // 扩容两倍 2*4 = 8
    if (capacity > MAX_CACHE_SIZE) {
        capacity = MAX_CACHE_SIZE;
    }
    // 走到这里表示 曾经有,但是已经满了,需要重新梳理
    reallocate(oldCapacity, capacity, true);
    // 内存 扩容完毕
    }
    
    • realloc方法:开辟空间
      该方法,在第一次创建以及两倍扩容时,都会使用,其源码实现如图所示

      realloc方法, 主要有以下几步

      • allocateBuckets方法:向系统申请开辟内存,即开辟bucket,此时的bucket只是一个临时变量
      • setBucketsAndMask方法:将临时的bucket存入缓存中,此时的存储分为两种情况:
        • 如果是真机,根据bucketmask的位置存储,并将occupied占用设置为0
        • 如果不是真机,正常存储bucketmask,并将occupied占用设置为0
      • 如果有旧的buckets,需要清理之前的缓存,即调用方法,其源码实现如下cache_collect_free
        • _garbage_make_room方法:创建垃圾回收空间,如果是第一次,需要分配回收空间,如果不是第一次,则将内存段加大,即原有内存*2
        • 记录存储这次的bucket
        • cache_collect方法:垃圾回收,清理旧的bucket
  • 【第三步】针对需要存储的bucket进行内部imp和sel赋值
    这部分主要是根据cache_hash方法,即哈希算法 ,计算sel-imp存储的哈希下标,分为以下三种情况

    • 如果哈希下标的位置未存储sel,即该下标位置获取sel等于0,此时将sel-imp存储进去,并将occupied占用大小加1

    • 如果当前哈希下标存储的sel 等于 即将插入的sel,则直接返回

    • 如果当前哈希下标存储的sel 不等于 即将插入的sel,则重新经过cache_next方法即哈希冲突算法,重新进行哈希计算,得到新的下标,再去对比进行存储

    其中涉及的两种哈希算法,其源码如下

    • cache_hash:哈希算法
    static inline mask_t cache_hash(SEL sel, mask_t mask) 
    {
        return (mask_t)(uintptr_t)sel & mask; // 通过sel & mask(mask = cap -1)
    }
    
    • cache_next:哈希冲突算法
    #if __arm__  ||  __x86_64__  ||  __i386__
    // objc_msgSend has few registers available.
    // Cache scan increments and wraps at special end-marking bucket.
    #define CACHE_END_MARKER 1
    static inline mask_t cache_next(mask_t i, mask_t mask) {
        return (i+1) & mask; //(将当前的哈希下标 +1) & mask,重新进行哈希计算,得到一个新的下标
    }
    
    #elif __arm64__
    // objc_msgSend has lots of registers available.
    // Cache scan decrements. No end marker needed.
    #define CACHE_END_MARKER 0
    static inline mask_t cache_next(mask_t i, mask_t mask) {
        return i ? i-1 : mask; //如果i是空,则为mask,mask = cap -1,如果不为空,则 i-  1,向前插入sel-imp
    }
    

cache_t的原理基本分析完成了,然后前文提及的几个问题,我们现在就有答案了
1、_mask是什么?

_mask是指掩码数据,用于在哈希算法或者哈希冲突算法中计算哈希下标,其中mask 等于capacity - 1

2、_occupied 是什么?

_occupied表示哈希表中 sel-imp占用大小 (即可以理解为分配的内存中已经存储了sel-imp的的个数),

init会导致occupied变化

属性赋值,也会隐式调用,导致occupied变化

方法调用,导致occupied变化

3、为什么随着方法调用的增多,其打印的occupiedmask变化

因为在cache初始化时,分配的空间是4个,随着方法调用的增多,当存储的sel-imp个数,即newOccupied + CACHE_END_MARKER(等于1)的和 超过 总容量的3/4,例如有4个时,当occupied等于2时,就需要对cache的内存进行两倍扩容

4、bucket数据为什么会有丢失的情况?,例如2-7中,只有say3、say4方法有函数指针

原因是在扩容时,是将原有的内存全部清除了,再重新申请了内存导致的

5、2-7中say3、say4的打印顺序为什么是say4先打印,say3后打印,且还是挨着的,即顺序有问题?

因为sel-imp的存储是通过哈希算法计算下标的,其计算的下标有可能已经存储sel,所以又需要通过哈希冲突算法重新计算哈希下标,所以导致下标是随机的,并不是固定的

6、打印的cache_t中的_ocupied为什么是从2开始?

这里是因为LGPerson通过alloc创建的对象,并对其两个属性赋值的原因,属性赋值,会隐式调用set方法,set方法的调用也会导致occupied变化

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350