Elasticsearch学习-父子文档

本文以Elasticsearch 6.8.4版本为例,介绍Elasticsearch父子文档的使用。

image

上一篇文章介绍了Elasticsearch的嵌套文档,这一篇来介绍另外一种关系文档,父子文档。

1、父子文档

父子文档在理解上来说,可以理解为一个关联查询,有些类似MySQL中的JOIN查询,通过某个字段关系来关联。

父子文档与嵌套文档主要的区别在于,父子文档的父对象和子对象都是独立的文档,而嵌套文档中都在同一个文档中存储,如下图所示:

image

这里引用官网的话,对比嵌套文档来说,父-子关系的主要优势有:

  • 更新父文档时,不会重新索引子文档。
  • 创建,修改或删除子文档时,不会影响父文档或其他子文档。这一点在这种场景下尤其有用:子文档数量较多,并且子文档创建和修改的频率高时。
  • 子文档可以作为搜索结果独立返回。

1.1 创建索引

这里还是以嵌套文档的数据为例,假设数据如下:

[
    {
        "title":"这是一篇文章",
        "body":"这是一篇文章,从哪里说起呢? ... ..."
    },
    {
        "name":"张三",
        "comment":"写的不错",
        "age":28,
        "date":"2020-05-04"
    },
    {
        "name":"李四",
        "comment":"写的很好",
        "age":20,
        "date":"2020-05-04"
    },
    {
        "name":"王五",
        "comment":"这是一篇非常棒的文章",
        "age":31,
        "date":"2020-05-01"
    }
]

创建索引名和type均为blog的索引,从上面数据可以看出,其实父文档(博客内容)与子文档分别用不同的字段来存储对应的数据,不过在创建索引文档的时候需要指定父子文档的关系,即文章为parent,留言为child,创建索引语句如下:

PUT http://localhost:9200/blog/

{
  "mappings": {
    "blog": {
      "properties": {
        "date": {
          "type": "date"
        },
        "name": {
          "type": "text",
          "fields": {
            "keyword": {
              "type": "keyword"
            }
          }
        },
        "comment": {
          "type": "text",
          "fields": {
            "keyword": {
              "type": "keyword"
            }
          }
        },
        "age": {
          "type": "long"
        },
        "body": {
          "type": "text",
          "fields": {
            "keyword": {
              "type": "keyword"
            }
          }
        },
        "title": {
          "type": "text",
          "fields": {
            "keyword": {
              "type": "keyword"
            }
          }
        },
        "relation": {
          "type": "join",
          "relations": {
            "parent": "child"
          }
        }
      }
    }
  }
}

如下图所示

image

1.2 插入数据

插入父文档数据,需要指定上文索引结构中的relation为parent,如下:

POST http://localhost:9200/blog/blog/1/

{
    "title":"这是一篇文章",
    "body":"这是一篇文章,从哪里说起呢? ... ...",
    "relation":"parent"
}

插入子文档,需要在请求地址上使用routing参数指定是谁的子文档,并且指定索引结构中的relation关系,如下:

POST http://localhost:9200/blog/blog/2?routing=1

{
    "name":"张三",
    "comment":"写的不错",
    "age":28,
    "date":"2020-05-04",
    "relation":{
        "name":"child",
        "parent":1
    }
}

POST http://localhost:9200/blog/blog/3?routing=1

{
    "name":"李四",
    "comment":"写的很好",
    "age":20,
    "date":"2020-05-04",
    "relation":{
        "name":"child",
        "parent":1
    }
}

POST http://localhost:9200/blog/blog/4?routing=1

{
    "name":"王五",
    "comment":"这是一篇非常棒的文章",
    "age":31,
    "date":"2020-05-01",
    "relation":{
        "name":"child",
        "parent":1
    }
}

插入完成后,如下图所示。

image

从这里其实可以很明显的看出与嵌套文档的区别了,嵌套文档只有一个文档,而这里是有四个文档。

1.3 查询

普通查询这里不进行赘述,关系查询的话其实很好理解,大致分为两种特殊情况:

  1. 根据父文档查询子文档 has_child
  2. 根据子文档查询父文档 has_parent

接下来我们来看如何进行关系查询,首先看一下通过子文档查询父文档,比如这样的场景,查询名称是张三的人留言的文章,查询语句如下:

{
  "query": {
    "has_child": {
      "type":"child",
      "query": {
        "match": {
          "name": "张三"
        }
      }
    }
  }
}

查询结果如下:

image

使用has_child来根据子文档内容查询父文档,其实type就是创建文档时,子文档的标识。

在使用子查父的时候,可以添加一些筛选条件来增强匹配的结果,比如最大匹配max_children和最小匹配min_children,这里有点类似should查询的minimum_should_match,感兴趣的可以去官网了解更多的细节。

到这里,其实对Elasticsearch特性了解的读者就会知道如何根据父文档查询子文档了,只需要注意一点,父查子type需要修改成parent_type,其余都与自查父类似,比如查询标题为“这是一篇文章”的数据的留言内容,查询语句如下:

{
  "query": {
    "has_parent": {
      "parent_type":"parent",
      "query": {
        "match": {
          "title": "这是一篇文章"
        }
      }
    }
  }
}

查询结果如下:

image

由于只有一组父子文档,效果不是很明显,感兴趣可以多造一些数据去体验

聚合查询与嵌套文档类似,比较简单,这里在说明另外一种场景:祖辈和孙辈可以创建吗?比如本文中的留言如果它也有子文档,那么可以根据文章查询孙辈吗?答案是可以的,只需要在has_child里面在嵌套一层has_child查询即可。

1.4 使用建议

  1. 父子文档都可以独立返回,对于某些场景很适用,比如主表信息是一些基本不变的数据,而子表信息经常增删改,并且子表信息经常有查询场景,这样就很适合使用父子文档。
  2. 父子文档需要在同一分片上,当然,我们无需做特殊处理,默认就会为我放入同一个分片,其实原理是这样的,Elasticsearch会根据routing中的参数去看父文档所在分片在哪,然后将对应文档存储进去。
  3. 父子文档查询效率相对嵌套文档较低,官网说是5-10倍左右。

其余官网也给定了一些建议,具体可以查看官方文档,地址:https://www.elastic.co/guide/cn/elasticsearch/guide/current/parent-child-performance.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352