GAN简图

GAN全称是Generative Adversarial Nets,中文叫做“生成对抗网络”。在GAN中有2个网络,一个网络用于生成数据,叫做“生成器”。另一个网络用于判别生成数据是否接近于真实,叫做“判别器”。 下图展示了最简单的GAN的结构以及工作原理。


模型示意图

D从真数据中学习好的经验,从G生成假数据中学到辨假的经验,相比较传统模型加入假数据,基于G不那么容易训练,相当于样本扩大,因此能提高D的表现水平。



D已经良好,开始讲之前两批数据的经验传送给G,教G如何造假



共同进步,G造假水平提高,D识别能力提高,相互影响,形成双赢局面。
Over

均衡后停止循环
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容