AI学习笔记(三)

Local Search

Hill-climbing

  • Simple hill climbing
    Generate successors until one is found better than current node
  • Stochastic hill climbing
    Random selection among the uphill moves
  • First-choice hill climbing

Simulated annealing

Local beam search

• Initially: k random states
• Next: determine all successors of the k current states • If any successor is a goal → finished
• Else, select k best from successors and repeat

  • Major difference from random-restart hill climbing
    • k best across all successors of k states rather than one best successor from each of k states
    • Allows more effort to be allocated to promising regions

Genetic algorithms

a variant of stochastic beam search in which successor states are generated by combining two parent states rather than by modifying a single state.

123.png

Like beam searches, GAs begin with a set of k randomly generated states, called the population.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容