Pyspark DataFrame读写

1. 连接本地spark

import pandas as pd
from pyspark.sql import SparkSession

spark = SparkSession \
    .builder \
    .appName('my_first_app_name') \
    .getOrCreate()

2. 创建DataFrame

2.1 从变量创建

stringrdd = spark.sparkContext.parallelize([
    (123, "Katie", 19, "brown"),
    (234, "Michael", 22, "green"),
    (345, "Simone", 23, "blue")
])
# 指定模式, StructField(name,dataType,nullable)
# 其中:
#   name: 该字段的名字,
#   dataType:该字段的数据类型,
#   nullable: 指示该字段的值是否为空
import pyspark.sql.types as typ
labels =  [('id',typ.LongType()),
          ('name',typ.StringType()),
          ('age',typ.LongType()),
          ('eyecolor',typ.StringType())]
schema = typ.StructType([typ.StructField(i[0],i[1],False)for i in labels])
# 对RDD应用该模式并且创建DataFrame
data = spark.createDataFrame(stringrdd,schema=schema)
# 利用DataFrame创建一个临时视图
data.registerTempTable("swimmers")
data.show()

2.2 使用自动类型推断的方式创建dataframe

data = [(123, "Katie", 19, "brown"),
        (234, "Michael", 22, "green"),
        (345, "Simone", 23, "blue")]
df = spark.createDataFrame(data, schema=['id', 'name', 'age', 'eyccolor'])
df.show()
df.count()

2.3 读取json文件

file = r"D:\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\people.json"
df = spark.read.json(file)
df.show()

2.4 读取csv文件

file = r'C:\Users\Administrator\Desktop\kaggle泰坦尼克号获救率预测数据集\train.csv'
df = spark.read.csv(file,header=True,inferSchema=True)
df.show(5)

2.5 读取mysql

# 此时需要将mysql-connector-java-8.0.13.jar驱动放到spark-2.2.0-bin-hadoop2.7\jars下面
# 单机环境可行,集群环境不行
# 重新执行
sql = '(select * from sc where C =01) t'
url = 'jdbc:mysql://localhost:3306/test?characterEncoding=utf-8&autoReconnect=true&useSSL=false&serverTimezone=GMT'
table = sql
properties = {"user":"root","password":"xdk520"}
df = spark.read.jdbc(url,table,properties=properties)
df.show()

2.6 从pandas.dataframe创建

data = pd.DataFrame([(123, "Katie", 19, "brown"),
        (234, "Michael", 22, "green"),
        (345, "Simone", 23, "blue")],columns= ['id', 'name', 'age', 'eyccolor'])
df = spark.createDataFrame(data)
df.show()

2.7 从列式存储的parquet读取

file = r"D:\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\users.parquet"
data = spark.read.parquet(file)
data.show()

2.8 读取hive

# 如果已经配置spark连接hive的参数,可以直接读取hive数据
spark = SparkSession \
        .builder \
        .enableHiveSupport() \      
        .master("172.31.100.170:7077") \
        .appName("my_first_app_name") \
        .getOrCreate()

df=spark.sql("select * from hive_tb_name")
df.show()

3. 保存文件

3.1 写进CSV

file1=r"D:\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\test.csv"
df.write.csv(path=file1, header=True, sep=",", mode='overwrite')
#保留第一行,以逗号作为分隔符,#overwrite 清空后再写入

3.2 保存到parquet

file2=r"D:\spark-2.1.0-bin-hadoop2.7\examples\src\main\resources\test.parquet"
df.write.parquet(path=file2,mode='overwrite')

3.3 写入sql

# 会自动对齐字段,也就是说,df 的列不一定要全部包含MySQL的表的全部列才行

# overwrite 清空表再导入
url = 'jdbc:mysql://localhost:3306/test?characterEncoding=utf-8&autoReconnect=true&useSSL=false&serverTimezone=GMT'
table = 'eye'
properties = {"user":"root","password":"xdk520"}
df.write.jdbc(url,table,mode='overwrite',properties=properties)

# mode= 'append '追加方式
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容