实战天池精准医疗大赛之一_数据分析

1. 赛题说明

 天池精准医疗大赛——人工智能辅助糖尿病遗传风险预测,这是明天即将开始的天池大数据比赛。赛题名字看起来很高深,其实是根据年龄,性别,肝功,血常规等体验指标,预测血糖值。数据挺少的,特征40个左右,训练集5000多个实例,测试集1000个实例。任何机器都能很快跑完。比赛地址:
https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.57e6e8dfMg8Z8V&raceId=231638

2. 预处理

(1) 缺失数据

 有大量的缺失值,特征分四类,分别是乙肝、血常规、肝功能、肾功能,一般的缺失值都是缺失整个类别数据(由于患者未做某项检查)。除血常规以外,其余三项都有大量的缺失值,尤其是乙肝类检查,多一半都是空值。 如果去掉这些数据,将会损失3/4的数据量。假设:医生不要求做该项检查,说明他认为该项指标基本正常,则在指标的正常范围内取随机值填充。

(2) 其它操作

 替换去掉其中中文字符

3. 数据分析

(1) 相关性分析:

 岁数与血糖的相关性最大为0.32,甘油三酯相关性0.23,还有年龄,碱性磷酸酶,白细胞计数等6项指标在0.15左右。(data.corr(), data.cov())

(2) PCA降维:

 前15个特征约占信息量的99.8%

(3) 分析血糖值分布:

绝大多数分布在4-15之间,比赛前期可将此范围之外的认为噪声。

4. 算法

(1) 算法分析

 这是一个有监督的回归问题,此比赛基本可以定位成特征工程加调参问题。预计先使用GBDT和随机森林,后面集成多个模型。 因为数据少,主要注意过拟合问题,可能使用先分类后回归的方式。注意回归不是按正确率计算结果的,此题根据题目要求,评估指标为MSE

(2) 迭代分析

 左图是迭代与误差的关系,迭代到100次后,测试集误差不再下降,训练集还在下降,好像开始过拟合,当然这与我设置的学习率相关,右图是迭代后计算的特征权重排序。

(3) 查看预测的主要出错位置

 从训练集中切出10%作为测试,蓝线是实际值,橙线为预测值,可以看到,由于大部分值分布在5-6之间,因此所有预测都被拉到了这个区间之内。 忽然想到之前“微信互动”预测中有一种做法,就是找到一个值,将训练集中所有实例都预测成该值,再计算误差。代入此题,试了一下,设为5.6分时误差最小,为2.4,比gbdt的2.2误差略高一些,说明算法比瞎蒙还是好一点。

5. 一些想法

(1) 一般去医院看病有问题的居多,所以相对正常值有些偏差,医生也可能作出有倾向性的判断。

(2) 该题可以把已有的知识和算法融合,使用一些现成的数据,比如正常范围。

(3) 周末检查拿结果的可能是比较特殊的病人。

(4) 岁数分成几段,更具代表意义。

(5) 可将数据修改为正常值,偏高,偏低,几个层次,做分段特征。

(6) 考虑病情比较严重的情况,可能需要分开处理,作为噪点先拿出来。

(7) 预测只是想知道被测试人是否为糖尿病,而不关注是预测与实际值的微小差距,所以也可以将其处理为分类问题。

(8) 可能需要对误差函数和评价函数做微调。

6. 一些尝试

(1) 在本地测试,删除所有缺失数据的实例,预测效果好很多。

(2) 如不考虑大于10的数据,预测效果好很多。

(3) 目前在特征工程方面,只做了修改缺失值,而排序特征,离散特征,统计特征都还没做,算法方面只使用了sklearn自带的gbdt,其它算法也还没试。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,451评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,172评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,782评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,709评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,733评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,578评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,320评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,241评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,686评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,878评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,992评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,715评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,336评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,912评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,040评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,173评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,947评论 2 355

推荐阅读更多精彩内容